Marijuana as a possible treatment for HIV and cancer

Marijuana

“There’s been some interesting research on using THC (tetrahydrocannabinol), the principal psychoactive drug in marijuana, to help fight HIV, and damage cancer cells in some leukemias and possibly malignant tumors.

…the possibility exists that information from both of these research studies may produce beneficial results in the treatment of HIV and cancer.”

More: http://americablog.com/2014/02/marijuana-treatment-hiv-cancer.html

Weed Could Block H.I.V.’s Spread. No, Seriously.

“But the U.S. government won’t let scientists try out this promising treatment on humans… proving that an illegal drug can stop a deadly disease in humans—without testing it on them—is impossible…

THC is one of 500 active ingredients in marijuana. And marijuana, despite many studies proving its medical value, is sill classified by the government as a Schedule 1 Substance.

In the face of mounting evidence that it is beneficial in treating diseases… it remains a controlled substance.

During HIV infection, one of the earliest effects is that the virus spreads rapidly throughout the body and kills a significant part of cells in the gut and intestine. This activity damages the gut in a way that allows the HIV to leak through the cell wall of the intestines and into the bloodstream.

When THC is introduced into this environment, it activates the CB2 receptors in the intestines to build new, healthy bacterial cells that block the virus from leaking through the cell walls. In other words, the body works hard to keep bad stuff in the intestines and the good stuff out.

Put another way: HIV kills the cells that protect the walls— THC brings them back. Reducing the amount of the virus in the lower intestines could then help keep uninfected people uninfected.”

More: http://www.thedailybeast.com/articles/2014/02/15/weed-can-block-h-i-v-s-spread-no-seriously.html

Chronic cannabidiol treatment improves social and object recognition in double transgenic APPswe/PS1∆E9 mice.

“Patients suffering from Alzheimer’s disease (AD) exhibit a decline in cognitive abilities including an inability to recognise familiar faces…

The non-psychoactive phytocannabinoid cannabidiol (CBD) exerts neuroprotective, anti-oxidant and anti-inflammatory effects and promotes neurogenesis. CBD also reverses Aβ-induced spatial memory deficits in rodents.

This is the first study to investigate the effect of chronic CBD treatment on cognition in an AD transgenic mouse model.

Our findings suggest that CBD may have therapeutic potential for specific cognitive impairments associated with AD.”

http://www.ncbi.nlm.nih.gov/pubmed/24577515

Knocking down the expression of adenylate cyclase-associated protein 1 inhibits the proliferation and migration of breast cancer cells.

“Adenylate cyclase-associated protein 1 (CAP1) is a conserved protein that was found to be up-regulated in breast cancer and related to the migration of breast cancer…

CAP1 might be a potential molecular targeted therapy for surgery and immune treatment.”

http://www.ncbi.nlm.nih.gov/pubmed/24509166

Plant-derived cannabinoids modulate the activity of transient receptor potential channels of ankyrin type-1 and melastatin type-8.

“… we have reported here for the first time the potent and efficacious modulatory effects by some phytocannabinoids on TRPA1- and TRPM8-mediated [Ca2+]ielevation…

Our findings suggest that phytocannabinoids and cannabis extracts exert some of their pharmacological actions also by interacting with TRPA1 and TRPM8 channels, with potential implications for the treatment of pain and cancer.”

http://jpet.aspetjournals.org/content/325/3/1007.long

Effects of cannabinoid and vanilloid drugs on positive and negative-like symptoms on an animal model of schizophrenia: The SHR strain.

“Studies have suggested that the endocannabinoid system is implicated in the pathophysiology of schizophrenia…

Our results indicate that the schizophrenia-like behaviors displayed by SHR are differently altered by cannabinoid and vanilloid drugs when compared to control animals and suggest the endocannabinoid and the vanilloid systems as a potential target for the treatment of schizophrenia.”

http://www.ncbi.nlm.nih.gov/pubmed/24556469

Effects of cannabinoid drugs on the deficit of prepulse inhibition of startle in an animal model of schizophrenia: the SHR strain.

“Clinical and neurobiological findings suggest that the cannabinoids and the endocannabinoid system may be implicated in the pathophysiology and treatment of schizophrenia…

Our results reinforce the role of the endocannabinoid system in the sensorimotor gating impairment related to schizophrenia, and point to cannabinoid drugs as potential therapeutic strategies.”

http://www.ncbi.nlm.nih.gov/pubmed/24567721

Δ9-Tetrahydrocannabinol Treatment During Human Monocyte Differentiation Reduces Macrophage Susceptibility to HIV-1 Infection

“The major psychoactive component of marijuana, Δ9-tetrahydrocannabinol (THC), also acts to suppress inflammatory responses. Receptors for THC, CB1, CB2, and GPR55, are differentially expressed on multiple cell types including monocytes and macrophages, which are important modulators of inflammation in vivo and target cells for HIV-1 infection. Use of recreational and medicinal marijuana is increasing, but the consequences of marijuana exposure on HIV-1 infection are unclear. Ex vivo studies were designed to investigate effects on HIV-1 infection in macrophages exposed to THC during or following differentiation.

THC treatment of primary human monocytes during differentiation reduced HIV-1 infection…

THC treatment of monocytes during differentiation into MDMs suppresses HIV-1 infection. 
Ultimately, the mechanism of THC suppression of HIV-1 infection was traced to a reduction in cell surface HIV receptor (CD4, CCR5 and CXCR4) expression that diminished entry efficiency.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4019698/

Cannabinoid receptor 2 is increased in acutely and chronically inflamed bladder of rats.

“Cannabinoid receptors are expressed in the urinary bladder and may affect bladder function… CB2 receptors may be a viable target for pharmacological treatment of bladder inflammation and associated pain…

In this study, we have shown that CB1 and CB2 are present in the bladder and its innervation, and that expression of CB2 is increased in the bladders of rats with acute and chronic cystitis. Bladder inflammation and pain is the summation of a number of biological events, including participation of the endocannabinoid system.

The endocannabinoid system could play an important role in modulation of severity of bladder inflammation and pain, and it may be possible to take advantage of the cannabinoid system in the bladder to decrease inflammation and resultant pain.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2592089/