Effects of chronic exercise on the endocannabinoid system in Wistar rats with high-fat diet-induced obesity.

“The endocannabinoid system is dysregulated during obesity in tissues involved in the control of food intake and energy metabolism.

We examined the effect of chronic exercise on the tissue levels of endocannabinoids (eCBs) and on the expression of genes coding for cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2) (Cnr1 and Cnr2, respectively) in the subcutaneous (SAT) and visceral adipose tissues and in the soleus and extensor digitorim longus (EDL) muscles, in rats fed with standard or high-fat diet…

The levels of eCBs and Cnr1 expression are altered in a tissue-specific manner following a high-fat diet, and chronic exercise reverses some of these alterations.”

http://www.ncbi.nlm.nih.gov/pubmed/26880264

Functions of the CB1 and CB 2 receptors in neuroprotection at the level of the blood-brain barrier.

“The cannabinoid (CB) receptors are the main targets of the cannabinoids, which include plant cannabinoids, endocannabinoids and synthetic cannabinoids. Over the last few years, accumulated evidence has suggested a role of the CB receptors in neuroprotection.

The blood-brain barrier (BBB) is an important brain structure that is essential for neuroprotection. A link between the CB receptors and the BBB is thus likely, but this possible connection has only recently gained attention.

Cannabinoids and the BBB share the same mechanisms of neuroprotection and both protect against excitotoxicity (CB1), cell death (CB1), inflammation (CB2) and oxidative stress (possibly CB independent)-all processes that also damage the BBB.

Several examples of CB-mediated protection of the BBB have been found, such as inhibition of leukocyte influx and induction of amyloid beta efflux across the BBB.

Moreover, the CB receptors were shown to improve BBB integrity, particularly by restoring the tightness of the tight junctions. This review demonstrated that both CB receptors are able to restore the BBB and neuroprotection, but much uncertainty about the underlying signaling cascades still exists and further investigation is needed.”

http://www.ncbi.nlm.nih.gov/pubmed/24929655

Identification of endocannabinoids and cannabinoid CB(1) receptor mRNA in the pituitary gland.

“Most data on effects of natural and synthetic cannabinoids on anterior pituitary hormone secretion point out to a primary impact on the hypothalamus. There is also some evidence, however, of possible direct actions of these compounds on the anterior pituitary, although the presence of cannabinoid receptors in the pituitary has not been documented as yet.

In the present study, we evaluated the presence of cannabinoid CB(1) receptor-mRNA transcripts in the pituitary gland by in situ hybridization.

We observed CB(1) receptor-mRNA transcripts in the anterior pituitary and to a lesser extent in the intermediate lobe whereas they were absent in the neural lobe. We then examined whether CB(1) receptor-mRNA levels in both pituitary lobes responded to chronic activation by a specific agonist, as did receptors located in adjacent hypothalamic nuclei and in other brain regions…

We also checked whether endogenous cannabinoid ligands are present in the anterior pituitary and the hypothalamus.

Although anandamide itself was detected only in trace amounts, concentrations of its precursor N-arachidonoyl-phosphatidyl-ethanolamine and of 2-arachidonoyl-glycerol were found in both tissues, suggesting that endocannabinoids may be synthetized in the anterior pituitary.

In summary, CB(1) receptors and corresponding ligands seem to be expressed in cells of the anterior and intermediate lobes of the pituitary, but the response of CB(1) receptor-mRNA transcripts in the anterior lobe to chronic agonist activation is different than the desensitization observed in hypothalamic nuclei.”

http://www.ncbi.nlm.nih.gov/pubmed/10461028

Involvement of Endocannabinoids in Alcohol “Binge” Drinking: Studies of Mice with Human Fatty Acid Amide Hydrolase Genetic Variation and After CB1 Receptor Antagonists.

“The endocannabinoid system has been found to play an important role in modulating alcohol intake.

Inhibition or genetic deletion of fatty acid amide hydrolase (FAAH; a key catabolic enzyme for endocannabinoids) leads to increased alcohol consumption and preference in rodent models.

A common human single-nucleotide polymorphism (SNP; C385A, rs324420) in the FAAH gene is associated with decreased enzymatic activity of FAAH, resulting in increased anandamide levels in both humans and FAAH C385A knock-in mice.

These data suggest that there is direct and selective involvement of the human FAAH C385A SNP and CB1 receptors in alcohol “binge” drinking.”

http://www.ncbi.nlm.nih.gov/pubmed/26857901

Endocannabinoids as Guardians of Metastasis.

“Endocannabinoids including anandamide and 2-arachidonoylglycerol are involved in cancer pathophysiology in several ways, including tumor growth and progression, peritumoral inflammation, nausea and cancer pain.

Recently we showed that the endocannabinoid profiles are deranged during cancer to an extent that this manifests in alterations of plasma endocannabinoids in cancer patients, which was mimicked by similar changes in rodent models of local and metastatic cancer.

The present topical review summarizes the complexity of endocannabinoid signaling in the context of tumor growth and metastasis.”

http://www.ncbi.nlm.nih.gov/pubmed/26875980

Attenuation of cue-induced reinstatement of nicotine seeking by URB597 through cannabinoid CB1 receptor in rats.

“The endocannabinoid system is composed of endocannabinoids (such as anandamide), their target receptors (CB1 and CB2 receptors, CB1Rs and CB2Rs), the enzymes that degrade them (fatty-acid-amide-hydrolase (FAAH) for anandamide), and an endocannabinoid transporter. FAAH inhibition has been recently identified as having a critical involvement in behaviors related to nicotine addiction and has been shown to reduce the effect of nicotine on the mesolimbic dopaminergic system via CB1R and peroxisome proliferator-activated receptor alpha (PPARα). Thus, inhibition of FAAH may represent a novel strategy for smoking cessation, but its mechanism of action on relapse to nicotine seeking is still unknown.

OBJECTIVE:

The study aims to explore the mechanism of action of the inhibitor of FAAH activity, URB597, on relapse to nicotine seeking by evaluating the effect of the CB1R, CB2R, and PPARα antagonists on the attenuating effect of URB597 on cue-induced reinstatement of nicotine seeking in rats.

RESULTS:

URB597 reduced cue-induced reinstatement of nicotine seeking, an effect that was reversed by the CB1R antagonist rimonabant, but not by the CB2R or PPARα antagonists AM630 and MK886, respectively.

CONCLUSIONS:

These results indicate that URB597 reduces cue-induced reinstatement in rats through a CB1 receptor-dependent mechanism, and not via CB2R or PPARα. Since FAAH inhibition represent a novel and promising strategy for tobacco smoking cessation, dissecting how it produces its action may lead to a better understanding of the neurobiological mechanisms underlying nicotine addiction.”

http://www.ncbi.nlm.nih.gov/pubmed/26864774

Cannabinoid pharmacology in cancer research: A new hope for cancer patients?

Image result for Eur J Pharmacol.

“Cannabinoids have been used for many centuries to ease pain and in the past decade, the endocannabinoid system has been implicated in a number of pathophysiological conditions, such as mood and anxiety disorders, movement disorders such as Parkinson’s and Huntington’s disease, neuropathic pain, multiple sclerosis, spinal cord injury, atherosclerosis, myocardial infarction, stroke, hypertension, glaucoma, obesity, and osteoporosis.

Several studies have demonstrated that cannabinoids also have anti-cancer activity and as cannabinoids are usually well tolerated and do not produce the typical toxic effects of conventional chemotherapies, there is considerable merit in the development of cannabinoids as potential anticancer therapies.

Whilst the presence of psychoactive effects of cannabinoids could prevent any progress in this field, recent studies have shown the value of the non-psychoactive components of cannabinoids in activating apoptotic pathways, inducing anti-proliferative and anti-angiogenic effects.

The aforementioned effects are suggested to be through pathways such as ERK, Akt, mitogen-activated protein kinase (MAPK) pathways, phosphoinositide 3-kinase (PI3K) pathways and hypoxia inducible factor 1 (HIF1), all of which are important contributors to the hallmarks of cancer.

Many important questions still remain unanswered or are poorly addressed thus necessitating further research at basic pre-clinical and clinical levels. In this review, we address these issues with a view to identifying the key challenges that future research needs to address.”

http://www.ncbi.nlm.nih.gov/pubmed/26852955

http://www.thctotalhealthcare.com/category/cancer/

Therapeutic Potential of Cannabinoids in Psychosis.

“Over recent years, the interest in the endocannabinoid system (ECS) as a new target for the treatment of schizophrenia has evolved.

The ECS represents one of the most relevant neurotransmitter systems in the brain and mainly fulfills a homeostatic role in terms of neurotransmission but also with respect to inflammatory processes.

Two main approaches to the modulation of endocannabinoid functioning have been chosen so far. First, the selective blockade or inverse agonism of the type 1 cannabinoid receptor has been tested for the improvement of acute psychotic symptoms, as well as for the improvement of cognitive functions in schizophrenia.

Second, the modulation of endocannabinoid levels by use of the phytocannabinoid cannabidiol and selective fatty acid amide hydrolase inhibitors has been proposed, and the antipsychotic properties of cannabidiol are currently being investigated in humans.

Unfortunately, for most of these trials that have focused on psychopathological and cognitive effects of cannabidiol, no published data are available. However, there is first evidence that cannabidiol may ameliorate psychotic symptoms with a superior side-effect profile compared with established antipsychotics.

In conclusion, several clinical trials targeting the ECS in acute schizophrenia have either been completed or are underway. Although publicly available results are currently limited, preliminary data indicate that selected compounds modulating the ECS may be effective in acute schizophrenia.

Nevertheless, so far, sample sizes of patients investigated are not sufficient to come to a final judgment, and no maintenance studies are available to ensure long-term efficacy and safety.”

http://www.ncbi.nlm.nih.gov/pubmed/26852073

http://www.thctotalhealthcare.com/category/schizophrenia/

A Lower Olfactory Capacity Is Related to Higher Circulating Concentrations of Endocannabinoid 2-Arachidonoylglycerol and Higher Body Mass Index in Women.

“The endocannabinoid (eCB) system can promote food intake by increasing odor detection in mice.

The eCB system is over-active in human obesity.

Our aim is to measure circulating eCB concentrations and olfactory capacity in a human sample that includes people with obesity and explore the possible interaction between olfaction, obesity and the eCB system.

Our results show that obese subjects have a lower olfactory capacity than non-obese ones and that elevated fasting plasma circulating 2-AG concentrations in obesity are linked to a lower olfactory capacity.

In agreement with previous studies we show that eCBs AEA and 2-AG, and their respective congeners have a distinct profile in relation to body mass index. The present report is the first study in humans in which olfactory capacity and circulating eCB concentrations have been measured in the same subjects.”

http://www.ncbi.nlm.nih.gov/pubmed/26849214

Cannabinoid receptor type 1 mediates high-fat diet-induced insulin resistance by increasing forkhead box O1 activity in a mouse model of obesity.

“Hepatic glucose production is promoted by forkhead box O1 (FoxO1) under conditions of insulin resistance.

The overactivity of cannabinoid receptor type 1 (CB1R) partly causes increased liver fat deposits and metabolic dysfunction in obese rodents by decreasing mitochondrial function.

The aim of the present study was to investigate the role of FoxO1 in CB1R-mediated insulin resistance through the dysregulation of mitochondrial function in the livers of mice with high-fat diet (HFD)-induced obesity.

Taken together, our findings suggest that the anti-insulin resistance effect of AM251, which leads to an improvement of mitochondrial function in hepatic steatosis, is mediated through FoxO1.”

http://www.ncbi.nlm.nih.gov/pubmed/26847930