New quinolone- and 1,8-naphthyridine-3-carboxamides as selective CB2 receptor agonists with anticancer and immuno-modulatory activity.

“Several recent studies suggest that selective CB2 receptor agonists may represent a valid pharmacological approach in the treatment of various diseases due to the absence of relevant psychoactive side effect…

Two compounds showing the best binding and selectivity profile behaved as a full agonist and a partial agonist at the CB2 receptor and induced a concentration-dependent decrease of cell viability on LNCaP, a prostatic cancer cell line expressing CB2 receptor.

Moreover considering that the CB2 receptor is mainly expressed in cells and organs of the immune system, the same compounds were studied for their potential immune-modulatory and anti-inflammatory effects in activated lymphocytes isolated from healthy controls and multiple sclerosis (MS) patients.”

http://www.ncbi.nlm.nih.gov/pubmed/25935384

Long-term disease-modifying effect of the endocannabinoid agonist WIN55,212-2 in a rat model of audiogenic epilepsy.

Modulation of the endocannabinoid (eCB) transmission is a promising approach to treating epilepsy.

Animal models can be used to investigate this approach. Krushinsky-Molodkina (KM) rats have, genetically, audiogenic epilepsy. Moreover, in these animals, repeated induction of audiogenic seizures results in a progressive prolongation of the seizures, known as audiogenic kindling.

Administration of the single dose of WIN55,212-2 one hour before the 4th seizure delayed the kindling process by two weeks, without any acute effect on the audiogenic seizures.

CONCLUSIONS:

This result suggests that short-term potentiation of the eCB system might modify the epileptogenic disease process in patients with a progressive course of epilepsy.”

http://www.ncbi.nlm.nih.gov/pubmed/25933961

http://www.thctotalhealthcare.com/category/epilepsy-2/

Enhancement of endocannabinoid signalling protects against cocaine-induced neurotoxicity.

“Cocaine is an addictive substance with a potential to cause deleterious effects in the brain. The strategies for treating its neurotoxicity, however, are limited.

Evidence suggest that the endocannabinoid system exerts neuroprotective functions against various stimuli. Thus, we hypothesized that inhibition of fatty acid amide hydrolase (FAAH), the main enzyme responsible for terminating the actions of the endocannabinoid anandamide, reduces seizures and cell death in the hippocampus in a model of cocaine intoxication…

In conclusion, the pharmacological facilitation of the anandamide/CB1/PI3K signalling protects the brain against cocaine intoxication in experimental models. This strategy may be further explored in the development of treatments for drug-induced neurotoxicity.”

Cannabinoid Receptor-2 Regulates Embryonic Hematopoietic Stem Cell Development via PGE2 and P-selectin Activity.

“Cannabinoids (CB) modulate adult hematopoietic stem and progenitor cell (HSPCs) function, however, impact on the production, expansion or migration of embryonic HSCs is currently uncharacterized.

Here, using chemical and genetic approaches targeting CB-signaling in zebrafish, we show that CB receptor (CNR) 2, but not CNR1, regulates embryonic HSC development…

Together, these data suggest CNR2-signaling optimizes the production, expansion and migration of embryonic HSCs by modulating multiple downstream signaling pathways.”

http://www.ncbi.nlm.nih.gov/pubmed/25931248

Role of CB2 receptors in social and aggressive behavior in male mice.

“This study was designed to examine the role of cannabinoid CB2r in social and aggressive behavior…

Our results suggest that CB2r is implicated in social interaction and aggressive behavior and deserves further consideration as a potential new target for the management of aggression.”

http://www.ncbi.nlm.nih.gov/pubmed/25921034

The Antitumor Activity of Plant-Derived Non-Psychoactive Cannabinoids.

“As a therapeutic agent, most people are familiar with the palliative effects of the primary psychoactive constituent of Cannabis sativa (CS), Δ9-tetrahydrocannabinol (THC), a molecule active at both the cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor subtypes.

Through the activation primarily of CB1 receptors in the central nervous system, THC can reduce nausea, emesis and pain in cancer patients undergoing chemotherapy.

During the last decade, however, several studies have now shown that CB1 and CB2 receptor agonists can act as direct antitumor agents in a variety of aggressive cancers.

In addition to THC, there are many other cannabinoids found in CS, and a majority produces little to no psychoactivity due to the inability to activate cannabinoid receptors.

For example, the second most abundant cannabinoid in CS is the non-psychoactive cannabidiol (CBD). Using animal models, CBD has been shown to inhibit the progression of many types of cancer including glioblastoma (GBM), breast, lung, prostate and colon cancer.

This review will center on mechanisms by which CBD, and other plant-derived cannabinoids inefficient at activating cannabinoid receptors, inhibit tumor cell viability, invasion, metastasis, angiogenesis, and the stem-like potential of cancer cells.

We will also discuss the ability of non-psychoactive cannabinoids to induce autophagy and apoptotic-mediated cancer cell death, and enhance the activity of first-line agents commonly used in cancer treatment.”

Critical Role of Mast Cells and Peroxisome Proliferator-Activated Receptor γ in the Induction of Myeloid-Derived Suppressor Cells by Marijuana Cannabidiol In Vivo.

“Cannabidiol (CBD) is a natural nonpsychotropic cannabinoid from marijuana (Cannabis sativa) with anti-epileptic and anti-inflammatory properties.

Effect of CBD on naive immune system is not precisely understood. In this study, we observed that administering CBD into naive mice triggers robust induction of CD11b+Gr-1+ myeloid-derived suppressor cells (MDSC) in the peritoneum, which expressed functional arginase 1, and potently suppressed T cell proliferation ex vivo…

Together, the results suggest that CBD may induce activation of PPAR-γ in mast cells leading to secretion of G-CSF and consequent MDSC mobilization.

CBD being a major component of Cannabis, our study indicates that marijuana may modulate or dysregulate the immune system by mobilizing MDSC.”

http://www.ncbi.nlm.nih.gov/pubmed/25917103

The critical role of spinal 5-HT7 receptors in opioid and non-opioid type stress-induced analgesia.

“The opioid and non-opioid types of stress-induced analgesia have been well defined. One of the non-opioid type involve the endocannabinoid system.

We previously reported that the spinal serotonin 7 receptor (5-HT7) blockers inhibit both morphine and cannabinoid-induced analgesia, thus we hypothesized that descending serotonergic pathways-spinal 5-HT7 receptor loop might contribute to stress-induced analgesia…

These results indicate that descending serotonergic pathways and the spinal 5-HT7 receptor loop play a crucial role in mediating both opioid and non-opioid type stress-induced analgesia.”

http://www.ncbi.nlm.nih.gov/pubmed/25917322

Endocannabinoids regulate the activity of astrocytic hemichannels and the microglial response against an injury: In vivo studies.

“Anandamide (AEA) is an endocannabinoid (EC) that modulates multiple functions in the CNS and that is released in areas of injury, exerting putative neuroprotective actions.

In the present study, we have used intravital microscopy to analyze the role of the EC system in the glial response against an acute insult…

In summary, these findings demonstrate that AEA modifies glial functions by promoting an enhanced pro-inflammatory glial response in the brain.”

http://www.ncbi.nlm.nih.gov/pubmed/25917763

A novel near-infrared fluorescence imaging probe that preferentially binds to cannabinoid receptors CB2R over CB1R.

“The type 2 cannabinoid receptors (CB2R) have gained much attention recently due to their important regulatory role in a host of pathophysiological processes.

However, the exact biological function of CB2R and how this function might change depending on disease progression remains unclear and could be better studied with highly sensitive and selective imaging tools for identifying the receptors.

Here we report the first near infrared fluorescence imaging probe (NIR760-XLP6) that binds preferentially to CB2R over the type 1 cannabinoid receptors (CB1R).

These findings indicate that NIR760-XLP6 is a promising imaging tool for the study of CB2R regulation.”

http://www.ncbi.nlm.nih.gov/pubmed/25916505