Cannabis-Based Medicine Reduces Multiple Pathological Processes in AβPP/PS1 Mice.

“Several recent findings suggest that targeting the endogenous cannabinoid system can be considered as a potential therapeutic approach to treat Alzheimer’s disease (AD).

The present study supports this hypothesis demonstrating that delta-9-tetrahydrocannabinol (THC) or cannabidiol (CBD) botanical extracts, as well as the combination of both natural cannabinoids, which are the components of an already approved cannabis-based medicine, preserved memory in AβPP/PS1 transgenic mice when chronically administered during the early symptomatic stage.

Moreover, THC + CBD reduced learning impairment in AβPP/PS1 mice.

…suggesting a cannabinoid-induced reduction in the harmful effect of the most toxic form of the Aβ peptide.

Among the mechanisms related with these positive cognitive effects, the anti-inflammatory properties of cannabinoids may also play a relevant role…

In summary, the present findings show that the combination of THC and CBD exhibits a better therapeutic profile than each cannabis component alone and support the consideration of a cannabis-based medicine as potential therapy against AD.”

Endocannabinoid signaling and epidermal differentiation.

“Endocannabinoids represent a class of endogenous lipid mediators, that are involved in various biological processes, both centrally and peripherally. The prototype member of this group of compounds, anandamide, regulates cell growth, differentiation and death; this holds true also in the skin, that is the largest organ of the body constantly exposed to physical, chemical, bacterial and fungal challenges.

The epidermis is a keratinized multistratified epithelium that functions as a barrier to protect the organism from dehydration, mechanical trauma, and microbial insults, and epidermal differentiation represents one of the best characterized mechanisms of cell specialization.

In this review, we shall summarize current knowledge about the main members of the so-called “endocannabinoid system (ECS)”, in order to put in a better perspective the manifold roles that they play in skin pathophysiology.

In particular, we shall discuss some aspects of the molecular regulation by endocannabinoids of proliferation and terminal differentiation (“cornification”) of mammalian epidermis, showing that ECS is finely regulated by, and can interfere with, the differentiation program.

In addition, we shall review evidence demonstrating that disruption of this fine regulation might cause different skin diseases, such as acne, seborrhoea, allergic dermatitis, itch, psoriasis and hair follicle regression (catagen), making of ECS an attractive target for therapeutic intervention.”

http://www.ncbi.nlm.nih.gov/pubmed/21628127

[A role for the endocannabinoid system in hepatic steatosis].

“The endocannabinoid system (SEC) is an important modulator of several metabolic functions.

This system is composed by cannabinoid receptors type 1 and 2 (RCB1 and RCB2), their endogenous ligands, known as endocannabinoids, and the enzymes involved in their synthesis and degradation. A deregulated SEC originates metabolic alterations in several tissues, resulting in the typical manifestations of the metabolic syndrome…

In this review we discuss the proposed mechanisms by which SEC is involved in the etiology of hepatic steatosis, as well as the therapeutic possibilities involving peripheral RCB1/RCB2 antagonism/agonism, for the treatment of this condition.”

http://www.ncbi.nlm.nih.gov/pubmed/25052273

http://www.thctotalhealthcare.com/category/hepatic-steatosis/

Mechanisms of control of neuron survival by the endocannabinoid system.

“Endocannabinoids act as retrograde messengers that, by inhibiting neurotransmitter release via presynaptic CB(1) cannabinoid receptors, regulate the functionality of many synapses. In addition, the endocannabinoid system participates in the control of neuron survival.

Thus, CB(1) receptor activation has been shown to protect neurons from acute brain injury as well as in neuroinflammatory conditions and neurodegenerative diseases.

Cannabinoid neuroprotective activity relies on the inhibition of glutamatergic neurotransmission and on other various mechanisms, and is supported by the observation that the brain overproduces endocannabinoids upon damage.

Besides promoting neuroprotection, a role for the endocannabinoid system in the control of neurogenesis from neural progenitors has been put forward. In addition, activation of CB(2) cannabinoid receptors on glial cells may also participate in neuroprotection by limiting the extent of neuroinflammation.

Altogether, these findings support that endocannabinoids constitute a new family of lipid mediators that act as instructive signals in the control of neuron survival.”

http://www.ncbi.nlm.nih.gov/pubmed/18781978

Defective Adult Neurogenesis in CB1 Cannabinoid Receptor Knockout Mice

  Fig. 1.

“…endogenous cannabinoid signaling mechanisms may represent a key component of cell-survival programs mobilized in the injured brain.

In addition to their neuroprotective effects, cannabinergic systems may also have an important role in brain development…

…expression of endocannabinoids and cannabinoid receptors in brain…

Neurogenesis, or the birth of new neurons, continues to occur beyond development and into adulthood, and several lines of evidence suggest that cannabinoid signaling may be involved in this process as well…

In addition to the well known effects of growth factors, a variety of drugs has been shown to influence adult neurogenesis. These include excitatory amino acid receptor antagonists, antidepressants, lithium, nitric oxide donors, phosphodiesterase inhibitors, and statins.

Together with the finding that neurogenesis can be regulated by cannabinoids, these observations imply that a broad range of pharmacological approaches may exist through which to modify neurogenesis for therapeutic purposes.”

http://molpharm.aspetjournals.org/content/66/2/204.full

The endocannabinoid system: a putative role in neurodegenerative diseases.

An external file that holds a picture, illustration, etc.
Object name is ijhrba-02-100-i001.jpg

“Scientific evidence shows that an hypofunction or a dysregulation of the endocannabinoid system may be responsible for some of the symptoms of diseases such as multiple sclerosis, amyotrophic lateral sclerosis, Huntington’s, Parkinson’s and Alzheimer’s diseases.

The aim of this review is to highlight the role of endocannabinoid system in neurodegenerative diseases

Scientific evidence shows that cannabis can provide symptomatic relief in several neurodegenerative diseases such as multiple sclerosis, Huntington’s, Parkinson’s and Alzheimer’s diseases, and amyotrophic lateral sclerosis. These findings imply that a hypofunction or a dysregulation of the endocannabinoid system may be responsible for some of the symptoms of these diseases. Moreover, given the abundance of CB1 receptors in areas associated with movement and executive thought, researchers’ interest has often focused on endocannabinoid levels in patients with motor degenerative disorders.

CONCLUSIONS:

The important role played by endocannabinoid system promises interesting developments, in particular to evaluate the effectiveness of new drugs in both psychiatry and neurology.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070159/

Clinical endocannabinoid deficiency (CECD) revisited: Can this concept explain the therapeutic benefits of cannabis in migraine, fibromyalgia, irritable bowel syndrome and other treatment-resistant conditions?

Image result for Neuro Endocrinol Lett

“Ethan B. Russo’s paper of December 1, 2003 explored the concept of a clinical endocannabinoid deficiency (CECD) underlying the pathophysiology of migraine, fibromyalgia, irritable bowel syndrome and other functional conditions alleviated by clinical cannabis.

Available literature was reviewed, including searches via the National Library of medicine database and other sources.

A review of the literature indicates that significant progress has been made since Dr. Ethan B. Russo’s landmark paper, just ten years ago (February 2, 2004). Investigation at that time suggested that cannabinoids can block spinal, peripheral and gastrointestional mechanisms that promote pain in headache, fibromyalgia, irritable bowel syndrome and muscle spasm.

CONCLUSION:

Subsequent research has confirmed that underlying endocannabinoid deficiencies indeed play a role in migraine, fibromyalgia, irritable bowel syndrome and a growing list of other medical conditions. Clinical experience is bearing this out. Further research and especially, clinical trials will further demonstrate the usefulness of medical cannabis. As legal barriers fall and scientific bias fades this will become more apparent.”  http://www.ncbi.nlm.nih.gov/pubmed/24977967

“Clinical endocannabinoid deficiency (CECD): can this concept explain therapeutic benefits of cannabis in migraine, fibromyalgia, irritable bowel syndrome and other treatment-resistant conditions? Migraine, fibromyalgia, IBS and related conditions display common clinical, biochemical and pathophysiological patterns that suggest an underlying clinical endocannabinoid deficiency that may be suitably treated with cannabinoid medicines.”  http://www.ncbi.nlm.nih.gov/pubmed/15159679

 

Ligand Activation of Cannabinoid Receptors Attenuates Hypertrophy of Neonatal Rat Cardiomyocytes.

“Endocannabinoids are bioactive amides, esters and ethers of long chain polyunsaturated fatty acids. Evidence suggests that activation of the endocannabinoid pathway offers cardioprotection against myocardial ischemia, arrhythmias, and endothelial dysfunction of coronary arteries.

…may represent a novel therapeutic approach to cardioprotection.”

http://www.ncbi.nlm.nih.gov/pubmed/24979612

Acute Resistance Exercise Induces Antinociception by Activation of the Endocannabinoid System in Rats.

“Resistance exercise (RE) is also known as strength training, and it is performed to increase the strength and mass of muscles, bone strength, and metabolism. RE has been increasingly prescribed for pain relief. However, the endogenous mechanisms underlying this antinociceptive effect are still largely unexplored. Thus, we investigated the involvement of the endocannabinoid system in RE-induced antinociception…

The present study suggests that a single session of RE activates the endocannabinoid system to induce antinociception.”

http://www.ncbi.nlm.nih.gov/pubmed/24977916

Cannabis for inflammatory bowel disease.

“The marijuana plant Cannabis sativa has been used for centuries as a treatment for a variety of ailments. It contains over 60 different cannabinoid compounds.

Studies have revealed that the endocannabinoid system is involved in almost all major immune events. Cannabinoids may, therefore, be beneficial in inflammatory disorders.In murine colitis, cannabinoids decrease histologic and microscopic inflammation.

In humans, cannabis has been used to treat a plethora of gastrointestinal problems, including anorexia, emesis, abdominal pain, diarrhea, and diabetic gastroparesis.

Despite anecdotal reports on medical cannabis in inflammatory bowel disease (IBD), there are few controlled studies. In an observational study in 30 patients with Crohn’s disease (CD), we found that medical cannabis was associated with improvement in disease activity and reduction in the use of other medications.

In a more recent placebo-controlled study in 21 chronic CD patients, we showed a decrease in the CD activity index >100 in 10 of 11 subjects on cannabis compared to 4 of 10 on placebo. Complete remission was achieved in 5 of 11 subjects in the cannabis group and 1 of 10 in the placebo group. Yet, in an additional study, low-dose cannabidiol did not have an effect on CD activity.

In summary, evidence is gathering that manipulating the endocannabinoid system can have beneficial effects in IBD, but further research is required to declare cannabinoids a medicine. We need to establish the specific cannabinoids, as well as appropriate medical conditions, optimal dose, and mode of administration, to maximize the beneficial effects while avoiding any potential harmful effects of cannabinoid use”

http://www.ncbi.nlm.nih.gov/pubmed/24969296