A role for GPR55 in human placental venous endothelial cells.

“Endocannabinoids and their G protein-coupled receptors have been suggested to play a key role in human pregnancy, by regulating important aspects such as implantation, decidualization, placentation and labor.

G protein-coupled receptor 55 (GPR55) was previously postulated to be another cannabinoid receptor, since specific cannabinoids were shown to act independently of the classical cannabinoid receptors CB1 or CB2.

Current knowledge about GPR55 expression and function in human placenta is very limited and motivated us to evaluate human placental GPR55 expression in relation to other human peripheral tissues and to analyze spatiotemporal GPR55 expression in human placenta.

Gene expression analysis revealed low GPR55 levels in human placenta, when compared to spleen and lung, the organs showing highest GPR55 expression.

Moreover, expression analysis showed 5.8 fold increased placental GPR55 expression at term compared to first trimester. Immunohistochemistry located GPR55 solely at the fetal endothelium of first trimester and term placentas. qPCR and immunocytochemistry consistently confirmed GPR55 expression in isolated primary placental arterial and venous endothelial cells. Incubation with L-α-lysophosphatidylinositol (LPI), the specific and functional ligand for GPR55, at a concentration of 1 µM, significantly enhanced migration of venous, but not arterial endothelial cells.

LPI-enhanced migration was inhibited by the GPR55 antagonist O-1918, suggesting a role of the LPI-GPR55 axis in placental venous endothelium function.”

Pharmacological blockade of the fatty acid amide hydrolase (FAAH) alters neural proliferation, apoptosis and gliosis in the rat hippocampus, hypothalamus and striatum in a negative energy context.

“Endocannabinoids participate in the control of neurogenesis, neural cell death and gliosis.

The pharmacological effect of the fatty acid amide hydrolase (FAAH) inhibitor URB597, which limits the endocannabinoid degradation, was investigated in the present study…

Main results indicated that FAAH inhibitor URB597 decreased neural proliferation, glia and apoptosis in a brain region-dependent manner, which were coupled to local changes in Faah and/or Cnr1 expression and a negative energy context.”

http://www.ncbi.nlm.nih.gov/pubmed/25870539

The effect of FAAH, MAGL, and Dual FAAH/MAGL inhibition on inflammatory and colorectal distension-induced visceral pain models in Rodents.

“Recent studies showed that the pharmacological inhibition of endocannabinoid degrading enzymes such as fatty acid amide hydrolase (FAAH) and monoacyl glycerol lipase (MAGL) elicit promising analgesic effects in a variety of nociceptive models without serious side effects…

The selective FAAH inhibitor and dual FAAH/MAGL inhibitors were effective in both inflammatory and mechanically evoked visceral pain, while the MAGL inhibitor elicited an analgesic effect in inflammatory, but not in distension-induced, visceral pain.”

http://www.ncbi.nlm.nih.gov/pubmed/25869205

Drug repurposing and emerging adjunctive treatments for schizophrenia.

“Schizophrenia is a frequent disorder, which substantially impairs patients’ quality of life. Moreover, the burden of illness for patients, their families and for the society, in general, is substantial.

Given the current failure of a number of mechanistically new drugs, repurposed compounds may serve as alternative and/or adjunctive agents for schizophrenic patients and for treatment refractory patients in particular. Anti-inflammatory drugs, as well as N-acetylcysteine, a precursor of the major antioxidant glutathione, hormones, glutamatergic and nicotinergic compounds, ‘nutraceuticals’ (e.g., ω-3 fatty acids) and cannabidiol, an endocannabinoid modulator, represent promising agents in this field.”

http://www.ncbi.nlm.nih.gov/pubmed/25866122

CB1 receptors modulate affective behaviour induced by neuropathic pain.

“Patients suffering from chronic pain are often also diagnosed with a psychiatric condition, in particular generalized anxiety and major depression. The underlying pathomechanisms contributing to this comorbidity, however, are not entirely clear.

In this manuscript we have focussed on the potential role of the cannabinoid receptor CB1, because it is known to modulate neuronal circuits contributing to chronic pain states and affective behaviours.

For this purpose we analysed the consequences of a partial sciatic nerve ligation on anxiety- and depression related behaviours in mice lacking CB1 receptors.

Our results show that the development of mechanical hypersensitivity was similar in CB1 deficient mice and wild type controls. However, CB1 knockouts showed much more pronounced behavioural manifestations of anxiety-related behaviors in the light-dark and zero-maze tests, sucrose anhedonia, and disturbed home-cage activity.

These results indicate that the endocannabinoid system affects chronic pain-induced mood changes through CB1 receptors.”

Simultaneous determination of endocannabinoids in murine plasma and brain substructures by surrogate-based LC-MS/MS: Application in tumor-bearing mice.

“The endocannabinoids (eCBs), N-arachidonoylethanolamine (anandamide, AEA) and 2-ararchidonylglycerol (2-AG) have been identified as main endogenous ligands for cannabinoid receptors.

Developing a sensitive and robust method to determine AEA and 2-AG has been shown to be essential to understand their effects in stress regulation and the pathogenesis of affective disorders.

Detection was performed in multiple reaction monitoring (MRM) mode with an electrospray ionization source operated in positive ion mode. The method was applied to assess plasma and brain eCBs in tumor-bearing mice.”

http://www.ncbi.nlm.nih.gov/pubmed/25863017

Role of the endogenous cannabinoid system in nicotine addiction: novel insights.

“Several lines of evidence have shown that the endogenous cannabinoids are implicated in several neuropsychiatric diseases. Notably, preclinical and human clinical studies have shown a pivotal role of the cannabinoid system in nicotine addiction.

The CB1 receptor inverse agonist/antagonist rimonabant (also known as SR141716) was effective to decrease nicotine-taking and nicotine-seeking in rodents, as well as the elevation of dopamine induced by nicotine in brain reward area. Rimonabant has been shown to improve the ability of smokers to quit smoking in randomized clinical trials. However, rimonabant was removed from the market due to increased risk of psychiatric side-effects observed in humans.

Recently, other components of the endogenous cannabinoid system have been explored. Here, we present the recent advances on the understanding of the role of the different components of the cannabinoid system on nicotine’s effects.

Those recent findings suggest possible alternative ways of modulating the cannabinoid system that could have implication for nicotine dependence treatment.”

http://www.ncbi.nlm.nih.gov/pubmed/25859226

http://www.thctotalhealthcare.com/category/addiction/

Cannabinoids receptor type 2, CB2, expression correlates with human colon cancer progression and predicts patient survival.

“Many studies have demonstrated that the endocannabinoid system (ECS) is altered in different tumor types, including colon cancer.

However, little is known about the role of the ECS in tumor progression.

Here we report the correlation between CB 2 expression and pathological data in a series of 175 colorectal cancer patients, as well as the response of the HT29 colon cancer-derived cell line upon CB 2 activation…

These results raise the question whether the activation of CB 2 should be considered as anti-tumoral therapy.”

http://www.ncbi.nlm.nih.gov/pubmed/25859556

http://www.thctotalhealthcare.com/category/colon-cancer/

The role of the endocannabinoid system in pain.

“Preparations of the Cannabis sativa plant have been used to analgesic effect for millenia, but only in recent decades has the endogenous system responsible for these effects been described.

The endocannabinoid (EC) system is now known to be one of the key endogenous systems regulating pain sensation, with modulatory actions at all stages of pain processing pathways.

The EC system is composed of two main cannabinoid receptors (CB1 and CB2) and two main classes of endogenous ligands or endocannabinoids (ECs).

The receptors have distinct expression profiles, with CB1 receptors found at presynaptic sites throughout the peripheral and central nervous systems (PNS and CNS, respectively), whilst CB2 receptor is found principally (but not exclusively) on immune cells.

The endocannabinoid ligands are lipid neurotransmitters belonging to either the N-acyl ethanolamine (NAEs) class, e.g. anandamide (AEA), or the monoacylglycerol class, e.g. 2-arachidonoyl glycerol (2-AG).

Both classes are short-acting transmitter substances, being synthesised on demand and with signalling rapidly terminated by specific enzymes. ECs acting at CB1 negatively regulate neurotransmission throughout the nervous system, whilst those acting at CB2 regulate the activity of CNS immune cells.

Signalling through both of these receptor subtypes has a role in normal nociceptive processing and also in the development resolution of acute pain states.

In this chapter, we describe the general features of the EC system as related to pain and nociception and discuss the wealth of preclinical and clinical data involving targeting the EC system with focus on two areas of particular promise: modulation of 2-AG signalling via specific enzyme inhibitors and the role of spinal CB2 in chronic pain states.”

http://www.ncbi.nlm.nih.gov/pubmed/25846617

http://www.thctotalhealthcare.com/category/pain-2/

The interactive role of cannabinoid and vanilloid systems in hippocampal synaptic plasticity in rats.

“Long-term potentiation (LTP) has been most thoroughly studied in the hippocampus, which has a key role in learning and memory. Endocannabinoids are one of the endogenous systems that modulate this kind of synaptic plasticity. The activation of the vanillioid system has also been shown to mediate synaptic plasticity in the hippocampus. In addition, immunohistochemical studies have shown that cannabinoid receptor type 1 (CB1) and vanilloid receptor 1 (TRPV1) are closely located in the hippocampus.

It seems that agonists of the vanilloid system modulate cannabinoid outputs that cause an increase in synaptic plastisity, while in contemporary consumption of two agonist, TRPV1 agonist can change production of endocannabinoid, which in turn result to enhancement of LTP induction. These findings suggest that the two systems may interact or share certain common signaling pathways in the hippocampus.”

http://www.ncbi.nlm.nih.gov/pubmed/25843413