The Antitumor Activity of Plant-Derived Non-Psychoactive Cannabinoids.

“As a therapeutic agent, most people are familiar with the palliative effects of the primary psychoactive constituent of Cannabis sativa (CS), Δ9-tetrahydrocannabinol (THC), a molecule active at both the cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor subtypes.

Through the activation primarily of CB1 receptors in the central nervous system, THC can reduce nausea, emesis and pain in cancer patients undergoing chemotherapy.

During the last decade, however, several studies have now shown that CB1 and CB2 receptor agonists can act as direct antitumor agents in a variety of aggressive cancers.

In addition to THC, there are many other cannabinoids found in CS, and a majority produces little to no psychoactivity due to the inability to activate cannabinoid receptors.

For example, the second most abundant cannabinoid in CS is the non-psychoactive cannabidiol (CBD). Using animal models, CBD has been shown to inhibit the progression of many types of cancer including glioblastoma (GBM), breast, lung, prostate and colon cancer.

This review will center on mechanisms by which CBD, and other plant-derived cannabinoids inefficient at activating cannabinoid receptors, inhibit tumor cell viability, invasion, metastasis, angiogenesis, and the stem-like potential of cancer cells.

We will also discuss the ability of non-psychoactive cannabinoids to induce autophagy and apoptotic-mediated cancer cell death, and enhance the activity of first-line agents commonly used in cancer treatment.”

Alkylindole-sensitive receptors modulate microglial cell migration and proliferation.

“Ligands targeting G protein-coupled receptors (GPCR) expressed by microglia have been shown to regulate distinct components of their activation process, including cell proliferation, migration and differentiation into M1 or M2 phenotypes.

Cannabinoids, including the active component of the Cannabis plant, tetrahydrocannabinol (THC), and the synthetic alkylindole (AI) compound, WIN55212-2 (WIN-2), activate two molecularly identified GPCRs: CB1 and CB2 .

Our results suggest that microglia express functional AI-sensitive receptors that control select components of their activation process.

Agonists of these novel targets might represent a novel class of therapeutics to influence the microglial cell activation process. ”

http://www.ncbi.nlm.nih.gov/pubmed/25914169

Cannabis has been shown to kill cancer cells

 

“The use of Cannabis for medicinal purposes dates back to ancient times.” http://www.cancer.gov/cancertopics/pdq/cam/cannabis/patient/page1

“Cannabis has been used for medicinal purposes for thousands of years.” http://www.cancer.gov/cancertopics/pdq/cam/cannabis/healthprofessional/page1

“The use of Cannabis for medicinal purposes dates back at least 3,000 years. It came into use in Western medicine in the 19th century and was said to relieve pain, inflammation, spasms, and convulsions.” http://www.cancer.gov/cancertopics/pdq/cam/cannabis/patient/page2

“Cannabis has been shown to kill cancer cells in the laboratory”  http://www.cancer.gov/cancertopics/pdq/cam/cannabis/patient/page1

“…cannabinoids may be able to kill cancer cells while protecting normal cells…

A laboratory study of delta-9-THC… showed that it damaged or killed the cancer cells…

A laboratory study of cannabidiol… showed that it caused cancer cell death…” http://www.cancer.gov/cancertopics/pdq/cam/cannabis/patient/page2

“Cannabinoids appear to kill tumor cells but do not effect their nontransformed counterparts and may even protect them from cell death.” http://www.cancer.gov/cancertopics/pdq/cam/cannabis/healthprofessional/page4

“Because cannabinoid receptors, unlike opioid receptors, are not located in the brainstem areas controlling respiration, lethal overdoses from Cannabis and cannabinoids do not occur.” http://www.cancer.gov/cancertopics/pdq/cam/cannabis/healthprofessional/page6

http://www.thctotalhealthcare.com/category/cancer/

[The role of endocannabinoid system in physiological and pathological processes in the eye].

“Plant of Cannabis sativa/ marihuana except for its psychotropic effects possesses a range of pharmacological properties, that has been utilized for medical purposes over a period of millenia.

Investigations concerning biochemical mechanism of action of the main and most active pharmacological compound of Cannabis sativa, cannabinoid 9-THC, contributed to the discovery of cannabinoid receptors both in the central nervous system (CNS) and peripheral tissues, that mediated actions of this substance.

The discovery made possible identification of a new, endogenous signaling system referred to as the endocannabinoid system.

Besides cannabinoid receptors CB1 and CB2, the system includes it’s endogenic ligands (endocannabinoids) and compounds that participate in their biosynthesis and inactivation. Structure and functioning of the endocannabinoid system is conservative in all vertebrates.

It’s activation with plant, synthetic and endogenous cannabinoids has an influence on multiple physiological and pathological processes within the eye.”

http://www.ncbi.nlm.nih.gov/pubmed/19195174

Tetrahydrocannabinol (THC) interferes with conditioned retching in Suncus murinus: an animal model of anticipatory nausea and vomiting (ANV).

“Little is understood about effective countermeasures to the expression of anticipatory nausea and vomiting (ANV) in chemotherapy patients.

We present a model of ANV based on the emetic reactions of the Suncus murinus (musk shrew). Following two pairings of a novel distinctive contextual cue with the emetic effects of an injection of lithium chloride, the context acquired the potential to elicit retching in the absence of the toxin.

The expression of this conditioned retching reaction was completely suppressed by pretreatment with THC at a dose that did not suppress general activity.

This provides the first experimental evidence in support of anecdotal reports that THC suppresses ANV.”

http://www.ncbi.nlm.nih.gov/pubmed/11277577

http://www.thctotalhealthcare.com/category/nauseavomiting/

Delta-9-tetrahydrocannabinol and cannabidiol, but not ondansetron, interfere with conditioned retching reactions elicited by a lithium-paired context in Suncus murinus: An animal model of anticipatory nausea and vomiting.

“Chemotherapy patients report not only acute nausea and vomiting during the treatment itself, but also report anticipatory nausea and vomiting upon re-exposure to the cues associated with the treatment.

We present a model of anticipatory nausea based on the emetic reactions of the Suncus murinus (musk shrew). Following three pairings of a novel distinctive contextual cue with the emetic effects of an injection of lithium chloride, the context acquired the potential to elicit conditioned retching in the absence of the toxin.

The expression of this conditioned retching reaction was completely suppressed by pretreatment with each of the principal cannabinoids found in marijuana, Delta(9)-tetrahydrocannabinol or cannabidiol, at a dose that did not suppress general activity.

These results support anecdotal claims that marijuana, but not ondansetron, may suppress the expression of anticipatory nausea.”

http://www.ncbi.nlm.nih.gov/pubmed/16197970

http://www.thctotalhealthcare.com/category/nauseavomiting/

Cannabinoid agonists and antagonists modulate lithium-induced conditioned gaping in rats.

“A series of experiments evaluated the potential of psychoactive cannabinoid agonists, delta-9-THC and HU-210, and non-psychoactive cannabinoids, Cannabidiol (CBD) and its dimethylheptyl homolog (CBD-dmh), to interfere with the establishment and the expression of conditioned gaping in rats.

All agents attenuated both the establishment and the expression of conditioned gaping.

Furthermore, the CB1 antagonist, SR-141716, reversed the suppressive effect of HU-210 on conditioned gaping.

Finally, SR-141716 potentiated lithium-induced conditioned gaping, suggesting that the endogenous cannabinoid system plays a role in the control of nausea.”

http://www.ncbi.nlm.nih.gov/pubmed/14527182

http://www.thctotalhealthcare.com/category/nauseavomiting/

Effects of cannabinoids on lithium-induced conditioned rejection reactions in a rat model of nausea.

“Marijuana has been reported to suppress nausea produced by chemotherapy treatment in human cancer patients.

… there is abundant evidence that cannabinoid agonists attenuate vomiting in emetic species…

The present experiments evaluated the potential of low doses of the cannabinoid agonists, delta-9-tetrahydrocannabinol (THC; 0.5 mg/kg, i.p.), and HU-210 (0.001 mg/kg and 0.01 mg/kg, i.p.), and the CB(1) antagonist SR-141716A in modulating the establishment and the expression of lithium-induced conditioned rejection reactions in rats.

These results indicate that the establishment and the expression of lithium-induced conditioned rejection reactions are suppressed by pretreatment with cannabinoid agents.”

http://www.ncbi.nlm.nih.gov/pubmed/12528012

http://www.thctotalhealthcare.com/category/nauseavomiting/

Evaluation of prevalent phytocannabinoids in the acetic acid model of visceral nociception.

Logo of nihpa

“Cannabis has been used for thousands of years as a therapeutic agent for pain relief, as well as for recreational purposes.

Delta-9-Tetrahydrocannabinol (Δ9-THC)… produces antinociceptive effects in a wide range of preclinical assays of pain.

Considerable preclinical research has demonstrated the efficacy of Delta(9)-tetrahydrocannabinol (Delta(9)-THC), the primary psychoactive constituent of Cannabis sativa, in a wide variety of animal models of pain, but few studies have examined other phytocannabinoids.

Indeed, other plant-derived cannabinoids, including cannabidiol (CBD), cannabinol (CBN), and cannabichromene (CBC) elicit antinociceptive effects in some assays. In contrast, tetrahydrocannabivarin (THCV), another component of cannabis, antagonizes the pharmacological effects of Delta(9)-THC.

These results suggest that various constituents of this plant may interact in a complex manner to modulate pain.

The primary purpose of the present study was to assess the antinociceptive effects of these other prevalent phytocannabinoids in the acetic acid stretching test, a rodent visceral pain model…

Importantly, the antinociceptive effects of Delta(9)-THC and CBN occurred at lower doses than those necessary to produce locomotor suppression, suggesting motor dysfunction did not account for the decreases in acetic acid-induced abdominal stretching.

These data raise the intriguing possibility that other constituents of cannabis can be used to modify the pharmacological effects of Delta(9)-THC by either eliciting antinociceptive effects (i.e., CBN) or antagonizing (i.e., THCV) the actions of Delta(9)-THC.

The results obtained in the present study are consistent with the view that Δ9-THC is the major phytocannabinoid present in marijuana that produces antinociception in the acetic acid abdominal stretching test.

…these results suggest that there is potential to develop medications containing various concentrations of specific phytocannabinoids to optimize therapeutic effects (e.g., antinociception) and minimize psychomimetic effects.

In sum, the results of the present study further support the notion that Δ9-THC is the predominant constituent of marijuana that is responsible for eliciting antinociceptive effects and indicate that CB1 receptors play a predominant role in mediating these effects.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2765124/

http://www.thctotalhealthcare.com/category/pain-2/

Modulation of HIVGP120 Antigen-Specific Immune Responses In Vivo by Δ9-Tetrahydrocannabinol.

“Approximately 25 % of HIV patients use marijuana for its putative therapeutic benefit…

Previously, a surrogate in vitro mouse model was established, which induced CD8+ T cell proliferation and gp120-specific IFNγ production. ∆9-Tetrahydrocannabinol (THC), the predominant psychoactive compound in marijuana, suppressed or enhanced the responses depending on the magnitude of cellular activation.

The purpose of the current study was to investigate whether THC produced similar effects in vivo and therefore a mouse model to induce HIVgp120-specific immune responses was established…

Collectively, our findings demonstrate that under certain conditions, THC enhances HIV antigen-specific immune responses, which occurs through CB1/CB2-dependent and -independent mechanisms.”

http://www.ncbi.nlm.nih.gov/pubmed/25900076

http://www.thctotalhealthcare.com/category/hivaids/