Cannabis oil stopped my cancer says Lake Macquarie’s Susannah Patch

“A LAKE Macquarie woman whose ‘‘aggressive’’ breast cancer spread to various parts of her body including her spine and lungs credits her remarkable recovery to cannabis oil.

Awaba woman Susannah Patch, 44, is one of a growing number of Hunter people who have treated themselves using an underground network of cannabis oil suppliers.

Although she had surgery, radiotherapy and chemotherapy, Ms Patch says most of her improvement has come since stopping chemotherapy against the advice of the cancer specialists and continuing with cannabis oil…

‘It is a distinct possibility that the cannabinoids may have ‘‘a place in the future treatment of cancer,’’

http://www.theherald.com.au/story/2587931/cannabis-oil-stopped-my-cancer/?cs=12

“It’s breast cancer awareness month. Please, BE AWARE:” http://www.thctotalhealthcare.com/its-breast-cancer-awareness-month-please-be-aware/

“A laboratory study of cannabidiol in estrogen receptor positive and estrogen receptor negative breast cancer cells showed that it caused cancer cell death while having little effect on normal breast cells.” http://www.cancer.gov/cancertopics/pdq/cam/cannabis/patient/page2

“Cannabidiol Induces Programmed Cell Death in Breast Cancer Cells… In summary, we showed that CBD, a plant-derived cannabinoid, preferentially kills breast cancer cells…” http://mct.aacrjournals.org/content/10/7/1161.full

“Cannabidiol, a safe and non-psychotropic ingredient of the marijuana plant Cannabis sativa,” http://www.ncbi.nlm.nih.gov/pubmed/19690824

“Cannabidiol (CBD) Shown To Kill Breast Cancer Cells” http://www.cafemom.com/group/99198/forums/read/19190923/Cannabidiol_CBD_Shown_To_Kill_Breast_Cancer_Cells

“Here, we show that Δ9-tetrahydrocannabinol (THC), reduces human breast cancer cell proliferation by blocking the progression of the cell cycle and by inducing apoptosis.” http://www.ncbi.nlm.nih.gov/pubmed/16818634

“Programmed Cell Death (Apoptosis)” http://www.ncbi.nlm.nih.gov/books/NBK26873/

“Cannabis has been shown to kill cancer cells…”
http://www.cancer.gov/cancertopics/pdq/cam/cannabis/patient/page1

“…cannabinoids may be able to kill cancer cells while protecting normal cells… A laboratory study of delta-9-THC… showed that it damaged or killed the cancer cells… A laboratory study of cannabidiol… showed that it caused cancer cell death…” http://www.cancer.gov/cancertopics/pdq/cam/cannabis/patient/page2

“Cannabinoids appear to kill tumor cells but do not effect their nontransformed counterparts and may even protect them from cell death.” http://www.cancer.gov/cancertopics/pdq/cam/cannabis/healthprofessional/page4

“Cannabis oil stopped my cancer says Lake Macquarie’s Susannah Patch” http://www.theherald.com.au/story/2587931/cannabis-oil-stopped-my-cancer/?cs=12

http://www.thctotalhealthcare.com/category/breast-cancer/

Colon carcinogenesis is inhibited by the TRPM8 antagonist cannabigerol, a Cannabis-derived non-psychotropic cannabinoid.

“Cannabigerol (CBG) is a safe non-psychotropic Cannabis-derived cannabinoid which interacts with specific targets involved in carcinogenesis…

Here, we investigated whether CBG protects against colon tumorigenesis.

In vivo, CBG inhibited the growth of xenograft tumors as well as chemically-induced colon carcinogenesis.

CBG hampers colon cancer progression in vivo and selectively inhibits the growth of colorectal cancer cells, an effect shared by other TRPM8 antagonists.

CBG should be considered translationally in colorectal cancer prevention and cure.”

http://www.ncbi.nlm.nih.gov/pubmed/25269802

http://www.thctotalhealthcare.com/category/colon-cancer/

Δ(9)-tetrahydrocannabinol targeting estrogen receptor signaling: the possible mechanism of action coupled with endocrine disruption.

“Δ(9)-Tetrahydrocannabinol (Δ(9)-THC), a biologically active constituent of marijuana, possesses a wide variety of pharmacological and toxicological effects (e.g., analgesia, hypotension, reduction of inflammation, and anti-cancer effects).

Among Δ(9)-THC’s biological activities, its recognized anti-estrogenic activity has been the subject of investigations.

… Δ(9)-THC is used as both a drug of abuse (marijuana) and as a preventive therapeutic to treat pain and nausea in cancer patients undergoing chemotherapy…

…important to investigate the mechanistic basis underlying the anti-estrogenic activity of Δ(9)-THC…

We have recently reported that ERβ, a second type of ER, is involved in the Δ(9)-THC abrogation of E2/ERα-mediated transcriptional activity. Here we discuss the possible mechanism(s) of the Δ(9)-THC-mediated disruption of E2/ERα signaling by presenting our recent findings as well.”

http://www.ncbi.nlm.nih.gov/pubmed/25177025

 

Cannabinoids as therapeutic agents in cancer: current status and future implications

Img8

“Cannabinoids… active compounds of the Cannabis sativa plant… cannabinoids are clinically used for anti-palliative effects, recent studies open a promising possibility as anti-cancer agents.

They have been shown to possess anti-proliferative and anti-angiogenic effects in vitro as well as in vivo in different cancer models…”  http://www.ncbi.nlm.nih.gov/pubmed/25115386

“Cannabinoids… the active compounds of the Cannabis sativa plant… anti-cancer agents… anti-proliferative… anti-angiogenic… anti-migratory and anti-invasive… The administration of single cannabinoids might produce limited relief compared to the administration of crude extract of plant containing multiple cannabinoids, terpenes and flavanoids.” Full-text: http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=view&path%5B0%5D=2233&path%5B1%5D=3664

http://www.thctotalhealthcare.com/category/cancer/

CANNABINOIDS INCREASE LUNG CANCER CELL LYSIS BY LYMPHOKINE-ACTIVATED KILLER CELLS VIA UPREGULATION OF ICAM-1.

“Cannabinoids have been shown to promote the expression of the intercellular adhesion molecule 1 (ICAM-1) on lung cancer cells as part of their anti-invasive and antimetastatic action…

Cannabidiol (CBD), a non-psychoactive cannabinoid, enhanced the susceptibility of cancer cells to adhere to and subsequently lysed by LAK cells, with both effects being reversed by a neutralizing ICAM-1 antibody…

ICAM-1-dependent pro-killing effects were further confirmed for the phytocannabinoid Δ9-tetrahydrocannabinol (THC) and R(+)-methanandamide, a stable endocannabinoid analogue…

Altogether, our data demonstrate cannabinoid-induced upregulation of ICAM-1 on lung cancer cells to be responsible for increased cancer cell susceptibility to LAK cell-mediated cytolysis.

These findings provide proof for a novel antitumorigenic mechanism of cannabinoids.”

http://www.ncbi.nlm.nih.gov/pubmed/25069049

http://www.thctotalhealthcare.com/category/lung-cancer/

Anti-Cancer Effects In Active Component Of Marijuana

“Guillermo Velasco and colleagues, at Complutense University, Spain, have provided evidence that suggests that cannabinoids such as the main active component of marijuana (THC) have anticancer effects on human brain cancer cells.

In the study, THC was found to induce the death of various human brain cancer cell lines and primary cultured human brain cancer cells by a process known as autophagy. Consistent with the in vitro data, administration of THC to mice with human tumors decreased tumor growth and induced the tumor cells to undergo autophagy.

As analysis of tumors from two patients with recurrent glioblastoma multiforme (a highly aggressive brain tumor) receiving intracranial THC administration showed signs of autophagy, the authors suggest that cannabinoid administration may provide a new approach to targeting human cancers.”

http://www.medicalnewstoday.com/releases/144770.php

“Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells”  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673842/

CANNABINOIDs INHIBIT angiogenic capacities of Endothelial cells via release of Tissue inhibitor of matrix metalloproteinases-1 from lung cancer cells.

“Cannabinoids inhibit tumor neovascularisation as part of their tumorregressive action.

However, the underlying mechanism is still under debate. In the present study the impact of cannabinoids on potential tumor-to-endothelial cell communication conferring anti-angiogenesis was studied…

Collectively, our data suggest a pivotal role of the anti-angiogenic factor TIMP-1 inintercellular tumor-endothelial cell communication resulting in anti-angiogenic features of endothelial cells.”

http://www.ncbi.nlm.nih.gov/pubmed/24976505

http://www.thctotalhealthcare.com/category/lung-cancer/

Cannabis May Help Combat Cancer-causing Herpes Viruses

ScienceDaily: Your source for the latest research news

“The compound in marijuana that produces a high, delta-9 tetrahydrocannbinol or THC, may block the spread of several forms of cancer causing herpes viruses, University of South Florida College of Medicine scientists report.

The findings, published Sept. 15 in the online journal BMC Medicine, could lead to the creation of antiviral drugs based on nonpsychoactive derivatives of THC.

The gamma herpes viruses include Kaposi’s Sarcoma Associated Herpes virus, which is associated with an increased risk of cancer that is particularly prevalent in AIDS sufferers. Another is Epstein-Barr virus, which predisposes infected individuals to cancers such as Burkitt’s lymphoma and Hodgkin’s disease.

Once a person is infected, these viruses can remain dormant for long periods within white blood cells before they burst out and begin replicating. This reactivation of the virus boosts the number of cells infected thereby increasing the chances that the cells will become cancerous.

The USF team, led by virologist Peter Medveczky, MD, found that this sudden reactivation was prevented if infected cells were grown in the presence of THC. While cells infected with a mouse gamma herpes virus normally died when the virus was reactivated, these same cells survived when cultured in the laboratory along with the cannabinoid compound – further evidence that THC prevents viral reactivation.

Furthermore, the researchers showed that THC acts specifically on gamma herpes viruses. The chemical had no effect on another related virus, herpes simplex-1, which causes cold sores and genital herpes.

Small concentrations of THC were more potent and selective against gamma herpes viruses than the commonly used antiviral drugs acyclovir, gancicyclovir and foscamet, said Dr. Medveczky, a professor in the Department of Medical Microbiology and Immunology.

The USF researchers suggest that THC selectively inhibits the spread of gamma herpes viruses by targeting a gene these viruses all share called ORF50.”

http://www.sciencedaily.com/releases/2004/09/040923092627.htm

The Inhibitory Effects of Cannabidiol on Systemic Malignant Tumors

“Cannabidiol may attenuate tumor growth in a number of other systemic malignancies.

Decreased tumor growth in pulmonary malignancies is seen after administration of cannabidiol.

Tumor metastasis also is markedly attenuated.

Similar attenuation of tumor growth is seen in breast malignancies.

The above examples clearly illustrate the significant antineoplastic effects of cannabidiol.

Hopefully, the next few years will see increased studies to fully and further evaluate these antineoplastic effects.”

https://www.ncbi.nlm.nih.gov/pubmed/23544909

http://www.jpsmjournal.com/article/S0885-3924(13)00115-2/fulltext#article-outline

http://www.thctotalhealthcare.com/category/cancer/

COX-2 and PPAR-γ confer cannabidiol-induced apoptosis of human lung cancer cells.

Figure 7.

“Within the last decade, evidence has been accumulated to suggest an antitumorigenic action of cannabinoids elicited via induction of apoptosis and alternative anticarcinogenic mechanisms… cannabidiol has been shown to elicit pronounced proapoptotic or autophagic effects on different types of tumor cells

This study investigates the role of COX-2 and PPAR-γ in cannabidiol’s proapoptotic and tumor-regressive action. In lung cancer cell lines (A549, H460) and primary cells from a patient with lung cancer, cannabidiol elicited decreased viability associated with apoptosis… our data show a novel proapoptotic mechanism of cannabidiol involving initial upregulation of COX-2 and PPAR-γ…

Collectively, our data strengthen the notion that activation of PPAR-γ may present a promising target for lung cancer therapy.

In addition and to the best of our knowledge, this is the first report to provide an inhibitor-proven tumor-regressive mechanism of cannabidiolin vivo as well as a proapoptotic mechanism confirmed by use of primary lung tumor cells.

Against this background and considering recent findings supporting a profound antimetastatic action of cannabidiol, this cannabinoid may represent a promising anticancer drug.”

http://mct.aacrjournals.org/content/12/1/69.long

http://www.thctotalhealthcare.com/category/lung-cancer/