Cannabidiol Rescues Acute Hepatic Toxicity and Seizure Induced by Cocaine.

“Cocaine is a commonly abused illicit drug that causes significant morbidity and mortality. The most severe and common complications are seizures, ischemic strokes, myocardial infarction, and acute liver injury. Here, we demonstrated that acute cocaine intoxication promoted seizure along with acute liver damage in mice, with intense inflammatory infiltrate.

Considering the protective role of the endocannabinoid system against cell toxicity, we hypothesized that treatment with an anandamide hydrolysis inhibitor, URB597, or with a phytocannabinoid, cannabidiol (CBD), protects against cocaine toxicity.

URB597 (1.0 mg/kg) abolished cocaine-induced seizure, yet it did not protect against acute liver injury.

Using confocal liver intravital microscopy, we observed that CBD reduced acute liver inflammation and damage induced by cocaine and prevented associated seizure.

Additionally, we showed that previous liver damage induced by another hepatotoxic drug (acetaminophen) increased seizure and lethality induced by cocaine intoxication, linking hepatotoxicity to seizure dynamics.

These findings suggest that activation of cannabinoid system may have protective actions on both liver and brain induced by cocaine, minimizing inflammatory injury promoted by cocaine, supporting its further clinical application in the treatment of cocaine abuse.”

http://www.ncbi.nlm.nih.gov/pubmed/25999668

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4427116/

Full FAAH inhibition combined with partial monoacylglycerol lipase inhibition: Augmented and sustained antinociceptive effects with negligible cannabimimetic side effects in mice.

“Inhibition of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), the primary hydrolytic enzymes for the respective endocannabinoids, N-arachidonoylethanolamine (AEA) and 2-arachidonylglycerol (2-AG), produces antinociception, but with minimal cannabimimetic side effects.

Although selective inhibitors of either enzyme often show partial efficacy in various nociceptive models, their combined blockade elicits augmented antinociceptive effects, but side effects emerge. Moreover, complete and prolonged MAGL blockade leads to CB1 receptor functional tolerance, which represents another challenge in this potential therapeutic strategy.

Therefore, the present study tested whether full FAAH inhibition, combined with partial MAGL inhibition, would produce sustained antinociceptive effects with minimal cannabimimetic side effects…

Thus, full FAAH inhibition combined with partial MAGL inhibition reduces neuropathic and inflammatory pain states, with minimal cannabimimetic effects.”

Neuroprotective effect of (-)Delta9-tetrahydrocannabinol and cannabidiol in N-methyl-D-aspartate-induced retinal neurotoxicity: involvement of peroxynitrite.

“In glaucoma, the increased release of glutamate is the major cause of retinal ganglion cell death. Cannabinoids have been demonstrated to protect neuron cultures from glutamate-induced death.

In this study, we test the hypothesis that glutamate causes apoptosis of retinal neurons via the excessive formation of peroxynitrite, and that the neuroprotective effect of the psychotropic Delta9-tetrahydroxycannabinol (THC) or nonpsychotropic cannabidiol (CBD) is via the attenuation of this formation.

These results suggest the potential use of CBD as a novel topical therapy for the treatment of glaucoma.

“Cannabinoid components of marijuana, such as (−)Δ9-tetrahydrocannabinol (THC), or the synthetic cannabinoid WIN55,212-2, have been shown to prevent glutamate- or NMDA-induced neurotoxicity in isolated neurons or in the brain via activation of the cannabinoid receptor subtype CB1.

…the nonpsychotropic component of marijuana, cannabidiol (CBD), and the synthetic nonpsychotropic cannabinoid, HU-211, as well as THC have been demonstrated as potent antioxidants and/or NMDA receptor antagonists that protect neuron cultures from glutamate-induced death or from oxidative stress.

… we demonstrated that THC and CBD are neuroprotective against NMDA-induced retinal injury and that their protective actions are in part because of an effect in reducing formation of lipid peroxides, nitrite/nitrate, and nitrotyrosine.

In addition to possessing neuroprotective or retinal neuroprotective activity as demonstrated here and elsewhere, cannabinoids such as THC, WIN55,212-2, endogenous cannabinoid 2-arachidonoylglycerol, as well as nonpsychotropic HU-211 have been demonstrated to induce dose-related reductions in intraocular pressure in human and in animal models.

 This suggests that cannabinoids may offer a multifaceted therapy for glaucoma.

In conclusion, our results indicate that lipid peroxidation and ONOO− formation play an important role in NMDA-induced retinal neurotoxicity and cell loss in the retina, and that THC and CBD, by reducing the formation of these compounds, are effective neuroprotectants.

The present studies could form the basis for the development of new topical therapies for the treatment of glaucoma.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1892413/

http://www.thctotalhealthcare.com/category/glaucoma-2/

Neuroprotective effects of cannabidiol in endotoxin-induced uveitis: critical role of p38 MAPK activation.

“Degenerative retinal diseases are characterized by inflammation and microglial activation.

The nonpsychoactive cannabinoid, cannabidiol (CBD), is an anti-inflammatory in models of diabetes and glaucoma.

We tested the hypothesis that retinal inflammation and microglia activation are initiated and sustained by oxidative stress and p38 mitogen-activated protein kinase (MAPK) activation, and that CBD reduces inflammation by blocking these processes…

Retinal inflammation and degeneration in uveitis are caused by oxidative stress.

CBD exerts anti-inflammatory and neuroprotective effects by a mechanism that involves blocking oxidative stress and activation of p38 MAPK and microglia.”

http://www.ncbi.nlm.nih.gov/pubmed/19052649

Neuroprotective and blood-retinal barrier-preserving effects of cannabidiol in experimental diabetes.

“Cannabinoids are known to possess therapeutic properties including inhibition of oxidation, NMDA receptor-activation, and inflammation.

The present study evaluates the ability of CBD to reduce oxidative stress, preserve BRB function, and prevent neural cell death in experimental diabetes…

These results demonstrate that CBD treatment reduces neurotoxicity, inflammation, and BRB breakdown in diabetic animals through activities that may involve inhibition of p38 MAP kinase.

The nonpsychotropic CBD is a promising candidate for anti-inflammatory and neuroprotective therapeutics.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1592672/

http://www.thctotalhealthcare.com/category/diabetes/

Cannabinoid receptor 2 attenuates microglial accumulation and brain injury following germinal matrix hemorrhage via ERK dephosphorylation in vivo and in vitro.

“Microglia accumulation plays detrimental roles in the pathology of germinal matrix hemorrhage (GMH) in the immature preterm brain.

Here, we investigated the effects of a cannabinoid receptor 2 (CB2R) agonist on microglia proliferation and the possible involvement of the mitogen-activated protein kinase (MAPK) family pathway in a collagenase-induced GMH rat model and in thrombin-induced rat microglia cells.

Overall, these findings suggest that activation of the endocannabinoid system might attenuate inflammation-induced secondary brain injury after GMH in rats by reducing microglia accumulation through a mechanism involving ERK dephosphorylation.

Enhancing CB2R activation is a potential treatment to slow down the course of GMH in preterm newborns.”

http://www.ncbi.nlm.nih.gov/pubmed/25963415

http://www.thctotalhealthcare.com/category/brain-trauma/

 

Lipopolysaccharide-induced murine embryonic resorption involves changes in endocannabinoid profiling and alters progesterone secretion and inflammatory response by a CB1-mediated fashion.

“Genital tract infections are a common complication of human pregnancy that can result in miscarriage. We have previously shown that a lipopolysaccharide (LPS) induces embryonic resorption in a murine model of inflammatory miscarriage. This is accompanied by a dramatic decrease in systemic progesterone levels associated with a robust pro-inflammatory response that results in embryo resoprtion.

Here, we tested the hypothesis that the endogenous cannabinoid system (eCS), through cannabinoid receptor 1 (CB1), plays a role in regulating progesterone levels and, therefore, the pro-inflammatory response.

We show that LPS treatment in pregnant mice causes significant changes in the eCS ligands, which are reversed by progesterone treatment. We further show the CB1-KO mice maintain higher plasma progesterone levels after LPS treatment, which is associated with a feebler uterine inflammatory response and a significant drop in embryo resorption.

These data suggest that manipulation of CB1 receptors and/or ligands is a potential therapeutic avenue to decrease infection-induced miscarriage.”

http://www.ncbi.nlm.nih.gov/pubmed/25958042

Downstream effects of endocannabinoid on blood cells: implications for health and disease.

“Endocannabinoids (eCBs), among which N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) are the most biologically active members, are polyunsaturated lipids able to bind cannabinoid, vanilloid and peroxisome proliferator-activated receptors. Depending on the target engaged, these bioactive mediators can regulate different signalling pathways, at both central and peripheral levels.

The biological action of eCBs is tightly controlled by a plethora of metabolic enzymes which, together with the molecular targets of these substances, form the so-called “endocannabinoid system”.

The ability of eCBs to control manifold peripheral functions has received a great deal of attention, especially in the light of their widespread distribution in the body.

In particular, eCBs are important regulators in blood, where they modulate haematopoiesis, platelet aggregation and apoptosis, as well as chemokine release and migration of immunocompetent cells.

Here, we shall review the current knowledge on the pathophysiological roles of eCBs in blood. We shall also discuss the involvement of eCBs in those disorders affecting the haematological system, including cancer and inflammation.

Knowledge gained to date underlines a fundamental role of the eCB system in blood, thus suggesting that it may represent a therapeutic promise for a broad range of diseases involving impaired hematopoietic cell functions.”

http://www.ncbi.nlm.nih.gov/pubmed/25957591

Cannabinoid-mediated modulation of neuropathic pain and microglial accumulation in a model of murine type I diabetic peripheral neuropathic pain.

Logo of molpain

“Despite the frequency of diabetes mellitus and its relationship to diabetic peripheral neuropathy (DPN) and neuropathic pain (NeP), our understanding of underlying mechanisms leading to chronic pain in diabetes remains poor.

Recent evidence has demonstated a prominent role of microglial cells in neuropathic pain states.

One potential therapeutic option gaining clinical acceptance is the cannabinoids, for which cannabinoidreceptors (CB) are expressed on neurons and microglia. We studied the accumulation and activation of spinal and thalamic microglia in streptozotocin (STZ)-diabetic CD1 mice and the impact of cannabinoid receptor agonism/antagonism during the development of a chronic NeP state.

The prevention of microglial accumulation and activation in the dorsal spinal cord was associated with limited development of a neuropathic pain state.

Cannabinoids demonstrated antinociceptive effects in this mouse model of DPN.

These results suggest that such interventions may also benefit humans with DPN, and their early introduction may also modify the development of the NeP state.”  http://www.ncbi.nlm.nih.gov/pubmed/20236533

“Tetrahydrocannabinol (THC), a component in marijuana, acts at both CB1 and CB2 receptors, but other forms of cannabinoids such as cannabinol and cannabidiol act predominantly at CB2 receptors. Such CB2 agonists may be potential anti-inflammatory therapies, antagonizing the 2-AG-induced recruitment of microglia and impacting upon development of an inflammatory state. Such properties may permit the cannabinoids to act in the prevention of microglial activation, perhaps limiting the development of neuropathic pain.

The present data confirm the efficacy of cannabinoid agonists, both for the CB1 and CB2 receptor, in modulation of acute thermal and tactile hypersensitivity as features of neuropathic pain. Furthermore, CB1 agonism from the onset of the offending stimulus (diabetes) normally leading to neuropathic pain ameliorated the development of a neuropathic pain state.”  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845559/

http://www.thctotalhealthcare.com/category/neuropathic-pain/

 

The effect of endocannabinoid system in ischemia-reperfusion injury: a friend or a foe?

“In recent years, the endocannabinoid system has emerged as a new therapeutic target in variety of disorders associated with inflammation and tissue injury, including those of the neuronal, liver, renal and cardiovascular system.

The aim of the present review is to elucidate the effect of endocannabinoid system on ischemia reperfusion injury (IRI) in different organs and systems.

Expert opinion: CB2 receptors may play an important compensatory role in controlling tissue inflammation and injury in cells of the neuronal, cardiovascular, liver and renal systems, as well as in infiltrating monocytes/macrophages and leukocytes during various pathological conditions of the systems (atherosclerosis, restenosis, stroke, myocardial infarction, heart, liver and renal failure).

These receptors limit inflammation and associated tissue injury.

On the basis of preclinical results, pharmacological modulation of CB2 receptors may hold a unique therapeutic potential in stroke, myocardial infarction, atherosclerosis, IRI and liver disease.”

http://www.ncbi.nlm.nih.gov/pubmed/25936364