Differential effectiveness of selected non-psychotropic phytocannabinoids on human sebocyte functions implicates their introduction in dry/seborrheic skin and acne treatment.

“Acne is a common skin disease characterized by elevated sebum production and inflammation of the sebaceous glands.

We have previously shown that a non-psychotropic phytocannabinoid ((-)-cannabidiol [CBD]) exerted complex anti-acne effects by normalizing “pro-acne agents”-induced excessive sebaceous lipid production, reducing proliferation and alleviating inflammation in human SZ95 sebocytes.

Therefore, in the current study we aimed to explore the putative anti-acne effects of further non-psychotropic phytocannabinoids ((-)-cannabichromene [CBC], (-)-cannabidivarin [CBDV], (-)-cannabigerol [CBG], (-)-cannabigerovarin [CBGV] and (-)-Δ9 -tetrahydrocannabivarin [THCV]).

Viability and proliferation of human SZ95 sebocytes were investigated by MTT- and CyQUANT-assays; cell death and lipid synthesis were monitored by DilC1 (5)-SYTOX Green labelling and Nile Red staining, respectively. Inflammatory responses were investigated by monitoring expressions of selected cytokines upon lipopolysaccharide treatment (RT-qPCR, ELISA). Up to 10 μM, the phytocannabinoids only negligibly altered viability of the sebocytes, whereas high doses (≥50 μM) induced apoptosis.

Interestingly, basal sebaceous lipid synthesis was differentially modulated by the substances: CBC and THCV suppressed it, CBDV had only minor effects, whereas CBG and CBGV increased it.

Importantly, CBC, CBDV and THCV significantly reduced arachidonic acid (AA)-induced “acne-like” lipogenesis.

Moreover, THCV suppressed proliferation, and all phytocannabinoids exerted remarkable anti-inflammatory actions.

Our data suggest that CBG and CBGV may have potential in the treatment of dry-skin syndrome, whereas CBC, CBDV and especially THCV show promise to become highly efficient, novel anti-acne agents.

Moreover, based on their remarkable anti-inflammatory actions, phytocannabinoids could be efficient, yet safe novel tools in the management of cutaneous inflammations.”

http://www.ncbi.nlm.nih.gov/pubmed/27094344

http://www.thctotalhealthcare.com/category/acne/

Toll-like receptor signalling as a cannabinoid target in Multiple Sclerosis.

“Toll-like receptors (TLRs) are the sensors of pathogen-associated molecules that trigger tailored innate immune intracellular signalling responses to initiate innate immune reactions.

Data from the experimental autoimmune encephalomyelitis (EAE) model indicates that TLR signalling machinery is a pivotal player in the development of murine EAE. To compound this, data from human studies indicate that complex interplay exists between TLR signalling and Multiple Sclerosis (MS) pathogenesis.

Cannabis-based therapies are in clinical development for the management of a variety of medical conditions, including MS. In particular Sativex®, a combination of plant-derived cannabinoids, is an oromucosal spray with efficacy in MS patients, particularly those with neuropathic pain and spasticity.

Despite this, the precise cellular and molecular mechanisms of action of Sativex® in MS patients remains unclear. This review will highlight evidence that novel interplay exists between the TLR and cannabinoid systems, both centrally and peripherally, with relevance to the pathogenesis of MS.”

http://www.ncbi.nlm.nih.gov/pubmed/27079840

Cannabidiol promotes browning in 3T3-L1 adipocytes.

“Recruitment of the brown-like phenotype in white adipocytes (browning) and activation of existing brown adipocytes are currently being investigated as a means to combat obesity.

The present study was designed to investigate the effects of cannabidiol (CBD), a major nonpsychotropic phytocannabinoid of Cannabis sativa, on induction of browning in 3T3-L1 adipocytes.

These data suggest possible roles for CBD in browning of white adipocytes, augmentation of lipolysis, thermogenesis, and reduction of lipogenesis.

In conclusion, the current data suggest that CBD plays dual modulatory roles in the form of inducing the brown-like phenotype as well as promoting lipid metabolism.

Thus, CBD may be explored as a potentially promising therapeutic agent for the prevention of obesity.”

http://www.ncbi.nlm.nih.gov/pubmed/27067870

http://www.thctotalhealthcare.com/category/obesity-2/

Analysis of endocannabinoid signaling elements and related proteins in lymphocytes of patients with Dravet syndrome.

“Cannabidiol (CBD) reduces seizures in childhood epilepsy syndromes including Dravet syndrome (DS).

A formulation of CBD has obtained orphan drug designation for these syndromes and clinical trials are currently underway.

We believe of interest to investigate whether these potential targets are altered in DS, in particular whether the endocannabinoid system is dysregulated. To this end, lymphocytes from patients and controls were used for analysis of gene expression of transmitter receptors and transporters, ion channels, and enzymes associated with CBD effects, as well as endocannabinoid genes.

In conclusion, together with changes in the voltage-dependent calcium channel α-1h subunit, we found an upregulation of CB 2 receptors, associated with an activation of lymphocytes and changes in inflammation-related genes, in DS patients. Such changes were also reported in inflammatory disorders and may indirectly support the occurrence of a potential dysregulation of the endocannabinoid system in the brain.”

http://www.ncbi.nlm.nih.gov/pubmed/27069631

http://www.thctotalhealthcare.com/category/dravet-syndome/

Industrial hemp decreases intestinal motility stronger than indian hemp in mice.

“Indian hemp has shown beneficial effects in various gastrointestinal conditions but it is not widely accepted due to high content of tetrahydrocannabinol resulting in unwanted psychotropic effects.

Since industrial hemp rich in cannabidiol lacks psychotropic effects the aim of research was to study the effects of industrial hemp on intestinal motility.

Although not completely without psychotropic activity cannabidiol could be a potential replacement for tetrahydrocannabinol.

Since industrial hemp infuse rich in cannabidiol reduces intestinal motility in healthy mice cannabidiol should be further evaluated for the treatment of intestinal hypermotility.”

http://www.ncbi.nlm.nih.gov/pubmed/23467947

The therapeutic use of cannabinoids: Forensic aspects.

“Since 2013 in the Italian market has been introduced the Nabiximols, a drug containing two of the main active cannabinoids: Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD). This drug has been approved in Italy in the treatment of Multiple Sclerosis (MS). It is an oral spray formulation and each puff of 100μl contains 2.7mg of Δ9-THC and 2.5mg of CBD.

In the present study we analyzed urine and blood samples collected from a group of 20 patients treated with Nabiximols in order to evaluate: blood Δ9-THC concentrations in relation to the dose administered and the duration of treatment and the potentiality of this medication to be used for drug habit.

The study was conducted on a sample group of patients affected by MS, of both sexes, age: 49-61 years, treated with Nabiximols for short (28 days) or long-term.

The results of our study allow affirming that it is unlikely to use this medication for drug habit or to sale it in the black market because of the low blood concentrations available and of its high costs.

These statements were confirmed by: (a) the low Δ9-THC concentrations in the pharmaceutical formulation; (b) the low blood concentrations produced by Nabiximols administration, more than 10 times smaller than the blood concentrations known to produce psychotropic effects; (c) the presence of CBD (Δ9-THC natural antagonist); (d) the route of administration (inhaled, not smoked).”

http://www.ncbi.nlm.nih.gov/pubmed/27038587

In vitro and in vivo efficacy of non-psychoactive cannabidiol in neuroblastoma.

“Neuroblastoma (nbl) is one of the most common solid cancers in children. Prognosis in advanced nbl is still poor despite aggressive multimodality therapy. Furthermore, survivors experience severe long-term multi-organ sequelae. Hence, the identification of new therapeutic strategies is of utmost importance.

Cannabinoids and their derivatives have been used for years in folk medicine and later in the field of palliative care. Recently, they were found to show pharmacologic activity in cancer, including cytostatic, apoptotic, and antiangiogenic effects.

We investigated, in vitro and in vivo, the anti-nbl effect of the most active compounds in Cannabis, Δ(9)-tetrahydrocannabinol (thc) and cannabidiol (cbd)…

Both compounds have antitumourigenic activity in vitro and impeded the growth of tumour xenografts in vivo. Of the two cannabinoids tested, cbd was the more active. Treatment with cbd reduced the viability and invasiveness of treated tumour cells in vitro and induced apoptosis. Moreover, cbd elicited an increase in activated caspase 3 in treated cells and tumour xenografts.

 

Our results demonstrate the antitumourigenic action of cbd on nbl cells. Because cbd is a nonpsychoactive cannabinoid that appears to be devoid of side effects, our results support its exploitation as an effective anticancer drug in the management of nbl.”

http://www.ncbi.nlm.nih.gov/pubmed/27022310

“Neuroblastomas are cancers that start in early nerve cells (called neuroblasts) of the sympathetic nervous system, so they can be found anywhere along this system.”  http://www.cancer.org/cancer/neuroblastoma/detailedguide/neuroblastoma-what-is-neuroblastoma

Beyond the CB1 Receptor: Is Cannabidiol the Answer for Disorders of Motivation?

“The Cannabis sativa plant has been used to treat various physiological and psychiatric conditions for millennia.

Current research is focused on isolating potentially therapeutic chemical constituents from the plant for use in the treatment of many central nervous system disorders.

Of particular interest is the primary nonpsychoactive constituent cannabidiol (CBD).

Unlike Δ9-tetrahydrocannabinol (THC), CBD does not act through the cannabinoid type 1 (CB1) receptor but has many other receptor targets that may play a role in psychiatric disorders.

Here we review preclinical and clinical data outlining the therapeutic efficacy of CBD for the treatment of motivational disorders such as drug addiction, anxiety, and depression.

Across studies, findings suggest promising treatment effects and potentially overlapping mechanisms of action for CBD in these disorders and indicate the need for further systematic investigation of the viability of CBD as a psychiatric pharmacotherapy.”

http://www.ncbi.nlm.nih.gov/pubmed/27023732

Prohedonic Effect of Cannabidiol in a Rat Model of Depression.

“Accumulating evidence suggests that cannabidiol (CBD) may be an effective and safe anxiolytic agent and potentially also an antidepressant.

 These findings extend the limited knowledge on the antidepressant effect of CBD, now shown for the first time in a genetic animal model of depression. These results suggest that CBD may be beneficial for the treatment of clinical depression and other states with prominent anhedonia.”

http://www.ncbi.nlm.nih.gov/pubmed/27010632

http://www.thctotalhealthcare.com/category/depression-2/

The effect of cannabinoids on the stretch reflex in multiple sclerosis spasticity.

“The aim of this observational study was to assess the efficacy of a tetrahydrocannabinol-cannabidiol (THC : CBD) oromucosal spray on spasticity using the stretch reflex in patients with multiple sclerosis (MS).

Numeric rating scale (NRS) for spasticity, modified Ashworth scale (MAS), and the stretch reflex were assessed before and during treatment in 57 MS patients with spasticity eligible for THC : CBD treatment.

A significant reduction in stretch reflex amplitude as well as significant reductions of NRS and MAS scores were observed. There was a low concordance between the three measures (stretch reflex, NRS, and MAS), likely related to the different aspects of muscle hypertonia assessed.

Stretch reflex responders were taking a significantly higher number of puffs, whereas no differences were found in the responders by the other scales, suggesting that a higher dosage would add benefit if tolerated.

The present study confirms the efficacy of cannabinoids in reducing spasticity in patients with MS, suggesting a higher sensitivity and specificity of the stretch reflex compared with other measures. As an objective and quantitative measure of spasticity, the stretch reflex is particularly useful to assess the effects of cannabinoids on spinal excitability and may play a role in future pharmacological studies.”

http://www.ncbi.nlm.nih.gov/pubmed/27003093