Cannabidiol in refractory status epilepticus: A review of clinical experiences

Seizure (journal) - Wikipedia

“Objective: To summarize and evaluate clinical experiences with refractory status epilepticus in which cannabidiol (CBD) was utilized for cessation of seizure activity.

Methods: A comprehensive literature review was performed on PubMED, MEDLINE, Scopus, and CINAHL between May – June 2022 with the assistance of a medical reference librarian using the following search terms: “Cannabidiol” [MAJR], “Status Epilepticus” [MAJR], “New-Onset Refractory Status Epilepticus”, and “cannabidiol.” Reports that provided dosing regimens and patient outcomes were included.

Results: Thirty-two articles were screened. Five articles were selected for inclusion in this review and detailed the clinical courses of 11 patients. Five of the 11 patients received CBD during the chronic epilepsy stage, while the remaining 6 received it during a period of acute status epilepticus. Patients were trialed on an average of 9 anti-epileptic drugs prior to CBD administration, after which 9 of the 11 patients experienced a reduction of seizure activity. Dosing of CBD ranged between 5-25 mg/kg/day and was titrated based on patient response to therapy. Adverse effects were relatively benign and were generally limited to gastrointestinal discomfort, reported after seizure cessation.

Conclusions: CBD may provide a potentially efficacious and safe management strategy in refractory status epilepticus, including patients with new-onset refractory status epilepticus and febrile infection-related epilepsy syndrome. A potential for drug-drug interactions between CBD and anti-epileptic drugs warrants judicious monitoring. Additional research is necessary to determine a definitive dosing strategy for this agent.”

https://pubmed.ncbi.nlm.nih.gov/36399869/

“The efficacy and safety of CBD has been demonstrated in Lennox-Gastaut and Darvet Syndromes.”

https://www.seizure-journal.com/article/S1059-1311(22)00260-6/fulltext

The value of real world evidence: The case of medical cannabis

Frontiers - Crunchbase Company Profile & Funding

“Randomised controlled trials (RCTs) have long been considered the gold standard of medical evidence. In relation to cannabis based medicinal products (CBMPs), this focus on RCTs has led to very restrictive guidelines in the UK, which are limiting patient access. There is general agreement that RCT evidence in relation to CBPMs is insufficient at present. As well as commercial reasons, a major problem is that RCTs do not lend themselves well to the study of whole plant medicines.

One solution to this challenge is the use of real world evidence (RWE) with patient reported outcomes (PROs) to widen the evidence base. Such data increasingly highlights the positive impact medical cannabis can have on patients’ lives.

This paper outlines the value of this approach which involves the study of interventions and patients longitudinally under medical care. In relation to CBMPs, RWE has a broad range of advantages. These include the study of larger groups of patients, the use of a broader range and ratio of components of CBMPs, and the inclusion of more and rarer medical conditions. Importantly, and in contrast to RCTs, patients with significant comorbidities-and from a wider demographic profile-can also be studied, so providing higher ecological validity and increasing patient numbers, whilst offering significant cost savings. We conclude by outlining 12 key recommendations of the value of RWE in relation to medical cannabis.

We hope that this paper will help policymakers and prescribers understand the importance of RWE in relation to medical cannabis and help them develop approaches to overcome the current situation which is detrimental to patients.”

https://pubmed.ncbi.nlm.nih.gov/36405915/

“Cannabis has an excellent safety profile and is a historically established medicine. We hope that this paper will aid policymakers and prescribers understand the value of RWE in relation to medical cannabis and help them develop approaches to overcome the current situation, which is ultimately harmful to patients, restricting access to medicines that could bring relief.”

https://www.frontiersin.org/articles/10.3389/fpsyt.2022.1027159/full

Examining the role of cannabinoids on osteoporosis: a review

SpringerLink

“Purpose: Prior research studies have shown that the endocannabinoid system, influenced by CBD and THC, plays a role in bone remodeling. As both the research on cannabis and use of cannabis continue to grow, novel medicinal uses of both its constituents as well as the whole plant are being discovered. This review examines the role of cannabinoids on osteoporosis, more specifically, the endocannabinoid system and its role in bone remodeling and the involvement of the cannabinoid receptors 1 and 2 in bone health, as well as the effects of Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and synthetic cannabinoids on bone.

Methods: A comprehensive literature search of online databases including PUBMED was utilized.

Results: A total of 29 studies investigating the effects of cannabis and/or its constituents as well as the activation or inactivation of cannabinoid receptors 1 and 2 were included and discussed.

Conclusion: While many of the mechanisms are still not yet fully understood, both preclinical and clinical studies show that the effects of cannabis mediated through the endocannabinoid system may prove to be an effective treatment option for individuals with osteoporosis.”

https://pubmed.ncbi.nlm.nih.gov/36401719/

https://link.springer.com/article/10.1007/s11657-022-01190-x

A large Australian longitudinal cohort registry demonstrates sustained safety and efficacy of oral medicinal cannabis for at least two years

Lopiccolo & Chang in PLoS ONE – BU Linguistics

“Introduction: Oral medicinal cannabis (MC) has been increasingly prescribed for a wide range of clinical conditions since 2016. Despite an exponential rise in prescriptions and publications, high quality clinical efficacy and safety studies are lacking. The outcomes of a large Australian clinical electronic registry cohort are presented.

Methods: A prospective cannabis-naïve patient cohort prescribed oral MC participated in an ongoing longitudinal registry at a network of specialised clinics. Patient MC dose, safety and validated outcome data were collected regularly over two years and analysed.

Results: 3,961 patients (mean age 56.07 years [SD 19.08], 51.0% female) with multimorbidity (mean diagnoses 5.14 [SD 4.08]) and polypharmacy (mean 6.26 medications [SD 4.61]) were included in this analysis. Clinical indications were for: chronic pain (71.9%), psychiatric (15.4%), neurological (2.1%), and other diagnoses (10.7%). Median total oral daily dose was 10mg for Δ9-tetrahydrocannabinol (THC) and 22.5mg for cannabidiol (CBD). A stable dose was observed for over two years. 37.3% experienced treatment related adverse events. These were graded mild (67%), moderate (31%), severe (<2%, n = 23) and two (0.1%) serious adverse events. Statistically significant improvements at a p value of <0.001 across all outcomes were sustained for over two years, including: clinical global impression (CGI-E, +39%: CGI-I, +52%; p<0.001), pain interference and severity (BPI, 26.1% and 22.2%; p<0.001), mental health (DASS-21, depression 24.5%, anxiety 25.5%, stress 27.7%; p<0.001), insomnia (ISI, 35.0%; p<0.001), and health status (RAND SF36: physical function, 34.4%: emotional well-being, 37.3%; p<0.001). Mean number of concomitant medications did not significantly change over 2 years (p = 0.481).

Conclusions: Oral MC was demonstrated to be safe and well-tolerated for a sustained period in a large complex cohort of cannabis-naïve, multimorbid patients with polypharmacy. There was significant improvement (p<0.001) across all measured clinical outcomes over two years. Results are subject to limitations of Real World Data (RWD) for causation and generalisability. Future high quality randomised controlled trials are awaited”

https://pubmed.ncbi.nlm.nih.gov/36399463/

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0272241.

Pharmacological Aspects and Biological Effects of Cannabigerol and Its Synthetic Derivatives

logo

“Cannabigerol (CBG) is a cannabinoid from the plant Cannabis sativa that lacks psychotomimetic effects. Its precursor is the acidic form, cannabigerolic acid (CBGA), which is, in turn, a biosynthetic precursor of the compounds cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC). CBGA decarboxylation leads to the formation of neutral cannabinoid CBG, through a chemical reaction catalyzed by heat. On the basis of the growing interest in CBG and with the aim of highlighting scientific information on this phytocannabinoid, we focused the content of this article on its pharmacokinetic and pharmacodynamic characteristics and on its principal pharmacological effects. CBG is metabolized in the liver by the enzyme CYP2J2 to produce hydroxyl and di-oxygenated products. CBG is considered a partial agonist at the CB1 receptor (R) and CB2R, as well as a regulator of endocannabinoid signaling. Potential pharmacological targets for CBG include transient receptor potential (TRP) channels, cyclooxygenase (COX-1 and COX-2) enzymes, cannabinoid, 5-HT1A, and alpha-2 receptors. Pre-clinical findings show that CBG reduces intraocular pressure, possesses antioxidant, anti-inflammatory, and anti-tumoral activities, and has anti-anxiety, neuroprotective, dermatological, and appetite-stimulating effects. Several findings suggest that research on CBG deserves to be deepened, as it could be used, alone or in association, for novel therapeutic approaches for several disorders.”

https://pubmed.ncbi.nlm.nih.gov/36397993/

https://www.hindawi.com/journals/ecam/2022/3336516/

Comparing Sublingual and Inhaled Cannabis Therapies for Low Back Pain: An Observational Open-Label Study

Rambam Maimonides Medical Journal - Thailand Medical News

“Background and objective: Medical cannabis is becoming an acceptable treatment modality in medicine, especially for pain relief. Concurrently, cannabis use is becoming more prevalent worldwide, a public demand-driven trend despite the lack of established scientific basis. This observational open-label study sought to investigate the effectiveness of cannabis therapy for alleviating low back pain symptoms.

Methods: Two types of cannabis treatment modalities were sequentially administered to chronic low back pain patients. After an initial 1-month washout period (WO1), the first modality was cannabidiol (CBD)-rich sublingual extract treatment administered for 10 months. Following another washout period, the second modality, Δ9-tetrahydrocannabinol (THC)-rich smoked inflorescence (whole dried cannabis flowers) was administered for 12 months.

Results: Enrolled in the study were 24 patients whose advanced imaging studies (i.e. computerized tomography or magnetic resonance imaging of the lumbar spine) revealed disc herniation or spinal stenosis. Three patients dropped out of extract therapy treatment but resumed study participation to receive THC-rich smoking therapy. After a minimum of 2 years, cannabis therapy had reduced lower back pain symptoms, as assessed by Oswestry Disability Index, the SF-12 patient-reported outcome questionnaire, and the visual analogue scale. Pain reduction was not significant during the extract treatment part of the study; however, pain reduction was significant during the inhaled therapy part of the study.

Conclusions: Our findings indicate that inhaled THC-rich therapy is more effective than CBD-rich sublingual extract therapy for treating low back pain and that cannabis therapy is safe and effective for chronic low back pain.”

https://pubmed.ncbi.nlm.nih.gov/36394500/

https://www.rmmj.org.il/issues/55/articles/1518

Cannabinoids as Prospective Anti-Cancer Drugs: Mechanism of Action in Healthy and Cancer Cells

Book cover

“Endogenous and exogenous cannabinoids modulate many physiological and pathological processes by binding classical cannabinoid receptors 1 (CB1) or 2 (CB2) or non-cannabinoid receptors.

Cannabinoids are known to exert antiproliferative, apoptotic, anti-migratory and anti-invasive effect on cancer cells by inducing or inhibiting various signaling cascades.

In this chapter, we specifically emphasize the latest research works about the alterations in endocannabinoid system (ECS) components in malignancies and cancer cell proliferation, migration, invasion, angiogenesis, autophagy, and death by cannabinoid administration, emphasizing their mechanism of action, and give a future perspective for clinical use.”

https://pubmed.ncbi.nlm.nih.gov/36396926/

https://link.springer.com/chapter/10.1007/5584_2022_748

Safety and Effectiveness of Cannabinoids to Danish Patients with Treatment Refractory Chronic Pain – A Retrospective Observational Real-world Study

“Background: Cannabinoids are considered a therapeutic option to patients suffering from treatment refractory chronic pain (TRCP) insufficiently relieved by conventional analgesics or experiencing intolerable adverse events (AEs) from those. This study aimed to explore safety and effectiveness of oral cannabinoids among patients with TRCP.

Methods: A retrospective study was conducted among Danish patients with TRCP being prescribed oral cannabinoids. Data on AEs and changes in pain intensity by numeric rating scale (NRS) before and after initiation of oral cannabinoid therapy were analyzed.

Results: Among 826 eligible patients ≥ 18 years old, 529 (64%) were included for data analysis at first follow- up (F/U1) (median 56 days from baseline) and 214 (26%) for second follow-up (F/U2) (median 126 days from F/U1). Mean age was 60±15.9 years and 70% were females. AEs were in general reported mild to moderate by 42% of patients at F/U1 and 34% at F/U2. AEs were mainly related to gastrointestinal (F/U1: 17% and F/U2: 13%) and nervous system disorders (F/U1: 14% and F/U2: 11%). Reduction in NRS was significantly different at both follow-up consultations compared with baseline (<.0001). Clinically relevant pain reduction (NRS ≥30%) was reported by 17% at F/U1 and 10% of patients at F/U2 in intention-to-treat analysis whereas the figures were 32% and 45% respectively, in per-protocol analysis.

Conclusion: Oral cannabinoid therapy seems to be safe and mildly effective in patients with TRCP. Randomized controlled trials with focus on comparable pain characteristics in diagnostical homogenous patient subgroups are needed for further improvement of evidence level for relief of chronic pain using oral cannabinoids.”

https://pubmed.ncbi.nlm.nih.gov/36394124/

https://onlinelibrary.wiley.com/doi/10.1002/ejp.2054

The anticonvulsant phytocannabinoids CBGVA and CBDVA inhibit recombinant T-type channels

Frontiers - Crunchbase Company Profile & Funding

“Introduction: Cannabidiol (CBD) has been clinically approved for intractable epilepsies, offering hope that novel anticonvulsants in the phytocannabinoid class might be developed. Looking beyond CBD, we have recently reported that a series of biosynthetic precursor molecules found in cannabis display anticonvulsant properties. However, information on the pharmacological activities of these compounds on CNS drug targets is limited. The current study aimed to fill this knowledge gap by investigating whether anticonvulsant phytocannabinoids affect T-type calcium channels, which are known to modulate neuronal excitability, and may be relevant to the anti-seizure effects of this class of compounds. 

Materials and methods: A fluorescence-based assay was used to screen the ability of the phytocannabinoids to inhibit human T-type calcium channels overexpressed in HEK-293 cells. A subset of compounds was further examined using patch-clamp electrophysiology. Alphascreen technology was used to characterise selected compounds against G-protein coupled-receptor 55 (GPR55) overexpressed in HEK-293 cells, as GPR55 is another target of the phytocannabinoids. 

Results: A single 10 µM concentration screen in the fluorescence-based assay showed that phytocannabinoids inhibited T-type channels with substantial effects on Cav3.1 and Cav3.2 channels compared to the Cav3.3 channel. The anticonvulsant phytocannabinoids cannabigerovarinic acid (CBGVA) and cannabidivarinic acid (CBDVA) had the greatest magnitudes of effect (≥80% inhibition against Cav3.1 and Cav3.2), so were fully characterized in concentration-response studies. CBGVA and CBDVA had IC50 values of 6 μM and 2 µM on Cav3.1 channels; 2 μM and 11 µM on Cav3.2 channels, respectively. Biophysical studies at Cav3.1 showed that CBGVA caused a hyperpolarisation shift of steady-state inhibition. Both CBGVA and CBDVA had a use-dependent effect and preferentially inhibited Cav3.1 current in a slow inactivated state. CBGVA and CBDVA were also shown to antagonise GPR55. 

Conclusion and implications: These findings show that CBGVA and CBDVA inhibit T-type calcium channels and GPR55. These compounds should be further investigated to develop novel therapeutics for treating diseases associated with dysfunctional T-type channel activity.”

https://pubmed.ncbi.nlm.nih.gov/36386164/

“Here we report that the understudied minor phytocannabinoids CBDVA and CBGVA, which are biosynthetic precursor molecules found in the cannabis plant, inhibit both T-type calcium channels and GPR55 receptors in vitro. Our data suggest that these compounds could be further explored for therapeutic potential in disease states which involve these channels or receptors, such as epilepsy, insomnia, pain and gastrointestinal disorders.”

https://www.frontiersin.org/articles/10.3389/fphar.2022.1048259/full

Cannabidiol for neurodegenerative disorders: A comprehensive review

Frontiers - Crunchbase Company Profile & Funding

“Despite the significant advances in neurology, the cure for neurodegenerative conditions remains a formidable task to date. Among various factors arising from the complex etiology of neurodegenerative diseases, neuroinflammation and oxidative stress play a major role in pathogenesis. To this end, some phytocannabinoids isolated from Cannabis sativa (widely known as marijuana) have attracted significant attention as potential neurotherapeutics. The profound effect of ∆9-tetrahydrocannabinol (THC), the major psychoactive component of cannabis, has led to the discovery of the endocannabinoid system as a molecular target in the central nervous system (CNS). Cannabidiol (CBD), the major non-psychoactive component of cannabis, has recently emerged as a potential prototype for neuroprotective drug development due to its antioxidant and anti-inflammatory properties and its well-tolerated pharmacological behavior. This review briefly discusses the role of inflammation and oxidative stress in neurodegeneration and demonstrates the neuroprotective effect of cannabidiol, highlighting its general mechanism of action and disease-specific pathways in Parkinson’s disease (PD) and Alzheimer’s disease (AD). Furthermore, we have summarized the preclinical and clinical findings on the therapeutic promise of CBD in PD and AD, shed light on the importance of determining its therapeutic window, and provide insights into identifying promising new research directions.”

https://pubmed.ncbi.nlm.nih.gov/36386183/

https://www.frontiersin.org/articles/10.3389/fphar.2022.989717/full