Δ8-THC Protects against Amyloid Beta Toxicity Modulating ER Stress In Vitro: A Transcriptomic Analysis

ijms-logo

“Alzheimer’s disease (AD) represents the most common form of dementia, characterized by amyloid β (Aβ) plaques and neurofibrillary tangles (NFTs). It is characterized by neuroinflammation, the accumulation of misfolded protein, ER stress and neuronal apoptosis. It is of main importance to find new therapeutic strategies because AD prevalence is increasing worldwide.

Cannabinoids are arising as promising neuroprotective phytocompounds. In this study, we evaluated the neuroprotective potential of Δ8-THC pretreatment in an in vitro model of AD through transcriptomic analysis.

We found that Δ8-THC pretreatment restored the loss of cell viability in retinoic acid-differentiated neuroblastoma SH-SY5Y cells treated with Aβ1-42. Moreover, the transcriptomic analysis provided evidence that the enriched biological processes of gene ontology were related to ER functions and proteostasis. In particular, Aβ1-42 upregulated genes involved in ER stress and unfolded protein response, leading to apoptosis as demonstrated by the increase in Bax and the decrease in Bcl-2 both at gene and protein expression levels. Moreover, genes involved in protein folding and degradation were also deregulated. On the contrary, Δ8-THC pretreatment reduced ER stress and, as a consequence, neuronal apoptosis.

Then, the results demonstrated that Δ8-THC might represent a new neuroprotective agent in AD.”

https://pubmed.ncbi.nlm.nih.gov/37047608/

“The results suggested that Δ8-THC may represent a novel neuroprotective agent in AD but also in other neurodegenerative diseases characterized by the accumulation of misfolded proteins.”

https://www.mdpi.com/1422-0067/24/7/6598

The Cannabinoids, CBDA and THCA, Rescue Memory Deficits and Reduce Amyloid-Beta and Tau Pathology in an Alzheimer’s Disease-like Mouse Model

ijms-logo

“Most studies related to hemp are focused on Cannabidiol (CBD) and Tetrahydrocannabinol (THC); however, up to 120 types of phytocannabinoids are present in hemp. Hemp leaves contain large amounts of Cannabidiolic acid (CBDA) and Tetrahydrocannabinolic acid (THCA), which are acidic variants of CBD and THC and account for the largest proportion of CBDA.

In recent studies, CBDA exhibited anti-hyperalgesia and anti-inflammatory effects. THCA also showed anti-inflammatory and neuroprotective effects that may be beneficial for treating neurodegenerative diseases. CBDA and THCA can penetrate the blood-brain barrier (BBB) and affect the central nervous system.

The purpose of this study was to determine whether CBDA and THCA ameliorate Alzheimer’s disease (AD)-like features in vitro and in vivo. The effect of CBDA and THCA was evaluated in the Aβ1-42-treated mouse model. We observed that Aβ1-42-treated mice had more hippocampal Aβ and p-tau levels, pathological markers of AD, and loss of cognitive function compared with PBS-treated mice. However, CBDA- and THCA-treated mice showed decreased hippocampal Aβ and p-tau and superior cognitive function compared with Aβ1-42-treated mice. In addition, CBDA and THCA lowered Aβ and p-tau levels, alleviated calcium dyshomeostasis, and exhibited neuroprotective effects in primary neurons.

Our results suggest that CBDA and THCA have anti-AD effects and mitigate memory loss and resilience to increased hippocampal Ca2+, Aβ, and p-tau levels. Together, CBDA and THCA may be useful therapeutic agents for treating AD.”

https://pubmed.ncbi.nlm.nih.gov/37047798/

https://www.mdpi.com/1422-0067/24/7/6827

The impact of cannabinoids on inflammasome signaling in HIV-1 infection

NeuroImmune Pharmacology and Therapeutics

“Human immunodeficiency virus type 1 (HIV-1) is a chronic disease that afflicts over 38 million people worldwide without a known cure. The advent of effective antiretroviral therapies (ART) has significantly decreased the morbidity and mortality associated with HIV-1 infection in people living with HIV-1 (PWH), thanks to durable virologic suppression. Despite this, people with HIV-1 experience chronic inflammation associated with co-morbidities. While no single known mechanism accounts for chronic inflammation, there is significant evidence to support the role of the NLRP3 inflammasome as a key driver.

Numerous studies have demonstrated therapeutic impact of cannabinoids, including exerting modulatory effects on the NLRP3 inflammasome. Given the high rates of cannabinoid use in PWH, it is of great interest to understand the intersecting biology of the role of cannabinoids in HIV-1-associated inflammasome signaling. Here we describe the literature of chronic inflammation in people with HIV, the therapeutic impact of cannabinoids in PWH, endocannabinoids in inflammation, and HIV-1-associated inflammation. We describe a key interaction between cannabinoids, the NLRP3 inflammasome, and HIV-1 viral infection, which supports further investigation of the critical role of cannabinoids in HIV-1 infection and inflammasome signaling.”

https://pubmed.ncbi.nlm.nih.gov/37027347/

“It is evident from the literature that cannabinoids show protective effects against inflammation associated with HIV-1. In both human and animal studies, THC/cannabis treatment has been shown to reduce inflammatory markers, including NLRP3-associated cytokine signaling and T-cell activation and proliferation. Studies also implicate a neuroprotective effect against NO-mediated cytotoxicity and BBB breakdown in rodents. Taken together, these findings suggest a role for cannabinoid receptor activation in reducing chronic inflammation and associated pathologies in PWH.”

https://www.degruyter.com/document/doi/10.1515/nipt-2023-0002/html