EXPLORING THE RELATIONSHIP BETWEEN MARIJUANA SMOKING AND COVID-19 OUTCOMES

“PURPOSE: Marijuana use is becoming increasingly prevalent worldwide, yet the full spectrum of its effects largely remains unknown. Although cannabinoids have immunomodulatory properties, there remains a significant gap in our understanding of the potential impact of marijuana use on COVID-19 outcomes. The purpose of the study is to compare the outcomes of COVID-19 infection on individuals who use marijuana and those who do not.

METHODS: National Inpatient Sample Database was used to sample individuals admitted with the diagnosis of COVID-19. Patients were divided into two groups based on marijuana use. Baseline demographics and comorbidities were collected using ICD-10 codes. Patients with missing data or age under 18 were excluded. Greedy propensity matching using R was performed to match marijuana users to non-users 1:1 on age, race, gender, and 17 other comorbidities including chronic lung disease. Univariate analysis pre- and post-match were performed. Binary logistic regression was performed post-match. A p-value of <0.05 was considered statistically significant.

RESULTS: Out of 322,214 patients included in the study, 2,603 were marijuana users. Marijuana users were younger and had higher prevalence of tobacco use. However, other comorbidities including obstructive sleep apnea, obesity, hypertension, and diabetes mellitus were more prevalent in marijuana non-users. On univariate analysis, marijuana users had significantly lower rates of intubation (6.8% vs 12%), acute respiratory distress syndrome (ARDS) (2.1% vs 6%), acute respiratory failure (25% vs 52.9%) and severe sepsis with multiorgan failure (5.8% vs 12%). They also had lower in-hospital cardiac arrest (1.2% vs 2.7%) and mortality (2.9% vs 13.5%). After 1:1 matching, marijuana users had lower rates of intubation (OR: 0.64 [0.51-0.81]; p<0.01), ARDS (OR: 0.39 [0.26-0.58]; p<0.01), acute respiratory failure (OR: 0.53 [0.47-0.61]; p<0.01), severe sepsis with multiorgan failure (OR: 0.68 [0.52-0.89]; p<0.01) and lower mortality (OR: 0.48 [0.33-0.69]; p<0.01)

CONCLUSIONS: Marijuana smokers had better outcomes and mortality compared to non-users. The beneficial effect of marijuana use may be attributed to its potential to inhibit viral entry into cells and prevent the release of proinflammatory cytokines, thus mitigating cytokine release syndrome.

CLINICAL IMPLICATIONS: The significant decrease in mortality and complications warrants further investigation of the association between marijuana use and COVID-19. Our study highlights a topic of future research for larger trials especially considering the widespread use of marijuana.”

https://journal.chestnet.org/article/S0012-3692(23)02201-8/fulltext

“Study Finds Cannabis Users Had Better Covid-19 Outcomes”

https://www.forbes.com/sites/ajherrington/2023/10/13/study-finds-cannabis-users-had-better-covid-19-outcomes/?sh=67f274281eb1

The Place of Cannabinoids in the Treatment of Gynecological Pain

pubmed logo

“Cannabis sativa (L), a plant with an extensive history of medicinal usage across numerous cultures, has received increased attention over recent years for its therapeutic potential for gynecological disorders such as endometriosis, chronic pelvic pain, and primary dysmenorrhea, due at least in part to shortcomings with current management options. Despite this growing interest, cannabis inhabits an unusual position in the modern medical pharmacopoeia, being a legal medicine, legal recreational drug, and an illicit drug, depending on jurisdiction. To date, the majority of studies investigating cannabis use have found that most people are using illicit cannabis, with numerous obstacles to medical cannabis adoption having been identified, including outdated drug-driving laws, workplace drug testing policies, the cost of quality-assured medical cannabis products, a lack of cannabis education for healthcare professionals, and significant and persistent stigma. Although currently lacking robust clinical trial data, a growing evidence base of retrospective data, cohort studies, and surveys does support potential use in gynecological pain conditions, with most evidence focusing on endometriosis. Cannabis consumers report substantial reductions in pelvic pain, as well as common comorbid symptoms such as gastrointestinal disturbances, mood disorders such as anxiety and depression, and poor sleep. Substitution effects were reported, with >50% reduction or cessation in opioid and/or non-opioid analgesics being the most common. However, a substantial minority report not disclosing cannabis consumption to their health professional. Therefore, while such deprescribing trends are potentially beneficial, the importance of medical supervision during this process is paramount given the possibility for withdrawal symptoms.”

https://pubmed.ncbi.nlm.nih.gov/37831340/

“Cannabis, whether purchased illicitly, or obtained through legal means, is commonly used by those with chronic pelvic pain, especially people with endometriosis. People report several benefits from using cannabis, including being able to reduce their normal medications including opioid based painkillers, but often don’t tell their health professional about this. This could lead to issues with withdrawal symptoms, so clinicians should be aware of the high prevalence of use of cannabis in this population.”

https://link.springer.com/article/10.1007/s40265-023-01951-z

Cannabinoids and endocannabinoids as therapeutics for nervous system disorders: preclinical models and clinical studies

pubmed logo

“Cannabinoids are lipophilic substances derived from Cannabis sativa that can exert a variety of effects in the human body. They have been studied in cellular and animal models as well as in human clinical trials for their therapeutic benefits in several human diseases.

Some of these include central nervous system (CNS) diseases and dysfunctions such as forms of epilepsy, multiple sclerosis, Parkinson’s disease, pain and neuropsychiatric disorders. In addition, the endogenously produced cannabinoid lipids, endocannabinoids, are critical for normal CNS function, and if controlled or modified, may represent an additional therapeutic avenue for CNS diseases. This review discusses in vitro cellular, ex vivo tissue and in vivo animal model studies on cannabinoids and their utility as therapeutics in multiple CNS pathologies. In addition, the review provides an overview on the use of cannabinoids in human clinical trials for a variety of CNS diseases.

Cannabinoids and endocannabinoids hold promise for use as disease modifiers and therapeutic agents for the prevention or treatment of neurodegenerative diseases and neurological disorders.”

https://pubmed.ncbi.nlm.nih.gov/37843213/

https://journals.lww.com/nrronline/fulltext/2024/04000/cannabinoids_and_endocannabinoids_as_therapeutics.22.aspx

Pharmacohistory of Cannabis Use-A New Possibility in Future Drug Development for Gastrointestinal Diseases

pubmed logo

“Humans have employed cannabis for multiple uses including medicine, recreation, food, and fibre. The various components such as roots, flowers, seeds, and leaves have been utilized to alleviate pain, inflammation, anxiety, and gastrointestinal disorders like nausea, vomiting, diarrhoea, and inflammatory bowel diseases (IBDs). It has occupied a significant space in ethnomedicines across cultures and religions. Despite multi-dimensional uses, the global prohibition of cannabis by the USA through the introduction of the Marijuana Tax Act in 1937 led to prejudice about the perceived risks of cannabis, overshadowing its medicinal potential. Nevertheless, the discovery of tetrahydrocannabinol (THC), the primary psychoactive compound in cannabis, and the endocannabinoid system renewed scientific interest in understanding the role of cannabis in modulating different conditions, including gastrointestinal disorders. Preparations combining cannabidiol and THC have shown promise in mitigating gut symptoms through anti-inflammatory and motility-enhancing effects. This review revisits the ethnomedicinal use of cannabis in gastrointestinal diseases and emphasizes the need for further research to determine optimal dosages, formulations, and safety profiles of cannabis-based medicines. It also underscores the future potential of cannabinoid-based therapies by leveraging the role of the expanded endocannabinoid system, an endocannabinoidome, in the modulation of gastrointestinal ailments.”

https://pubmed.ncbi.nlm.nih.gov/37834122/

“Taken together, the future of cannabis and cannabinoids research for gastrointestinal disorders involves a comprehensive understanding of their mechanisms of action, multi-centred rigorous clinical trials, personalized medicine approaches, and continued exploration of formulation development and safety considerations. These efforts have the potential to yield novel therapeutic options and improve the quality of life for patients with gastrointestinal disorders.”

https://www.mdpi.com/1422-0067/24/19/14677

Phytocannabinoids Reduce Inflammation of Primed Macrophages and Enteric Glial Cells: An In Vitro Study

pubmed logo

“Intestinal inflammation is mediated by a subset of cells populating the intestine, such as enteric glial cells (EGC) and macrophages. Different studies indicate that phytocannabinoids could play a possible role in the treatment of inflammatory bowel disease (IBD) by relieving the symptoms involved in the disease.

Phytocannabinoids act through the endocannabinoid system, which is distributed throughout the mammalian body in the cells of the immune system and in the intestinal cells. Our in vitro study analyzed the putative anti-inflammatory effect of nine selected pure cannabinoids in J774A1 macrophage cells and EGCs triggered to undergo inflammation with lipopolysaccharide (LPS). The anti-inflammatory effect of several phytocannabinoids was measured by their ability to reduce TNFα transcription and translation in J774A1 macrophages and to diminish S100B and GFAP secretion and transcription in EGCs.

Our results demonstrate that THC at the lower concentrations tested exerted the most effective anti-inflammatory effect in both J774A1 macrophages and EGCs compared to the other phytocannabinoids tested herein.

We then performed RNA-seq analysis of EGCs exposed to LPS in the presence or absence of THC or THC-COOH. Transcriptomic analysis of these EGCs revealed 23 differentially expressed genes (DEG) compared to the treatment with only LPS. Pretreatment with THC resulted in 26 DEG, and pretreatment with THC-COOH resulted in 25 DEG. To evaluate which biological pathways were affected by the different phytocannabinoid treatments, we used the Ingenuity platform. We show that THC treatment affects the mTOR and RAR signaling pathway, while THC-COOH mainly affects the IL6 signaling pathway.”

https://pubmed.ncbi.nlm.nih.gov/37834076/

https://www.mdpi.com/1422-0067/24/19/14628

Non-Psychoactive Phytocannabinoids Inhibit Inflammation-Related Changes of Human Coronary Artery Smooth Muscle and Endothelial Cells

pubmed logo

“Atherosclerosis is associated with vascular smooth muscle cell proliferation, chronic vascular inflammation, and leukocyte adhesion.

In view of the cardioprotective effects of cannabinoids described in recent years, the present study investigated the impact of the non-psychoactive phytocannabinoids cannabidiol (CBD) and tetrahydrocannabivarin (THCV) on proliferation and migration of human coronary artery smooth muscle cells (HCASMC) and on inflammatory markers in human coronary artery endothelial cells (HCAEC).

In HCASMC, CBD and THCV at nontoxic concentrations exhibited inhibitory effects on platelet-derived growth factor-triggered proliferation (CBD) and migration (CBD, THCV). When interleukin (IL)-1β- and lipopolysaccharide (LPS)-stimulated HCAEC were examined, both cannabinoids showed a concentration-dependent decrease in the expression of vascular cell adhesion molecule-1 (VCAM-1), which was mediated independently of classical cannabinoid receptors and was not accompanied by a comparable inhibition of intercellular adhesion molecule-1. Further inhibitor experiments demonstrated that reactive oxygen species, p38 mitogen-activated protein kinase activation, histone deacetylase, and nuclear factor κB (NF-κB) underlie IL-1β- and LPS-induced expression of VCAM-1. In this context, CBD and THCV were shown to inhibit phosphorylation of NF-κB regulators in LPS- but not IL-1β-stimulated HCAEC. Stimulation of HCAEC with IL-1β and LPS was associated with increased adhesion of monocytes, which, however, could not be significantly abolished by CBD and THCV.

In summary, the results highlight the potential of the non-psychoactive cannabinoids CBD and THCV to regulate inflammation-related changes in HCASMC and HCAEC. Considering their effect on both cell types studied, further preclinical studies could address the use of CBD and THCV in drug-eluting stents for coronary interventions.”

https://pubmed.ncbi.nlm.nih.gov/37830604/

https://www.mdpi.com/2073-4409/12/19/2389

Eight Weeks of Daily Cannabidiol Supplementation Improves Sleep Quality and Immune Cell Cytotoxicity

pubmed logo

“Background: The endocannabinoid system is active in nervous and immune cells and involves the expression of two cannabinoid receptor genes (CB1 and CB2), along with endogenous endocannabinoid ligands, 2-arachidonoyl glycerol (2-AG) and arachidonoyl ethanolamide (anandamide), and their synthetic enzymes. Cannabidiol (CBD) is a non-intoxicating exogenous cannabinoid agonist derived from plants that, at high doses, has received FDA approval as an anticonvulsant for epileptic seizures, and at low doses is marketed as a food-grade supplement for improved mental health, sleep quality, and immunological function. At present, the predominance of published CBD clinical research has focused on ameliorative or disease-specific intervention, with few trials investigating CBD effects in healthy populations.

Methods: This clinical study aimed to investigate the effects of 8 weeks of 50 mg oral CBD on mental health, sleep quantity and quality, and immune cell function in healthy, college-aged individuals. Twenty-eight participants (average age 25.9 ± 6.1 y) were randomized to receive either daily oral capsules of 50 mg of CBD (CB, n = 14) or a calorie-matched placebo (CN, n = 14). Participants completed pre- and post-intervention assessments, including anthropometric measurements, mental health surveys, sleep analysis, and immunological function assessments.

Results: After completing the 8-week intervention, there were no significant changes in body weight and BMI (CN: 1.09 ± 0.89%: CB: 1.41 ± 1.07%), or body fat percentage (CN: 9.01 ± 7.51%: CB: 8.57 ± 7.81%), respectively (values are % change pre to post, p > 0.05). There were also no significant differences between CB and CN groups with respect to mental health measures, sleep quantity, or circulating immunophenotype as a result of the intervention. However, the CB group experienced significant improvements in sleep quality measured objectively using a sleep questionnaire (p = 0.0023) and enhanced Natural Killer (NK) immune cell function assessed in situ (p = 0.0125).

Conclusions: Eight weeks of daily 50 mg CBD may improve sleep quality, and NK immunosurveillance in healthy, younger adults.”

https://pubmed.ncbi.nlm.nih.gov/37836465/

“These results collectively support the notion that low dose CBD supplementation may offer benefits in enhancing sleep quality in humans and improving immunosurveillance against cancer cells in situ.”

https://www.mdpi.com/2072-6643/15/19/4173

Applications of Cannabinoids in Neuropathic Pain: An Updated Review

pubmed logo

“Neuropathic pain is experienced due to injury to the nerves, underlying disease conditions or toxicity induced by chemotherapeutics. Multiple factors can contribute to neuropathic pain such as central nervous system (CNS)-related autoimmune and metabolic disorders, nerve injury, multiple sclerosis and diabetes. Hence, development of pharmacological interventions to reduce the drawbacks of existing chemotherapeutics and counter neuropathic pain is an urgent unmet clinical need.

Cannabinoid treatment has been reported to be beneficial for several disease conditions including neuropathic pain.

Cannabinoids act by inhibiting the release of neurotransmitters from presynaptic nerve endings, modulating the excitation of postsynaptic neurons, activating descending inhibitory pain pathways, reducing neural inflammation and oxidative stress and also correcting autophagy defects. This review provides insights on the various preclinical and clinical therapeutic applications of cannabidiol (CBD), cannabigerol (CBG), and cannabinol (CBN) in various diseases and the ongoing clinical trials for the treatment of chronic and acute pain with cannabinoids.

Pharmacological and genetic experimental strategies have well demonstrated the potential neuroprotective effects of cannabinoids and also elaborated their mechanism of action for the therapy of neuropathic pain.”

https://pubmed.ncbi.nlm.nih.gov/37824417/

https://www.dl.begellhouse.com/journals/3667c4ae6e8fd136,7ec6441519bff684,786cb61f3f1ec955.html

The potential protective and therapeutic effects of cannabidiol oil on experimental Leukemia induced by DMBA in male rats

pubmed logo

“Background: 7,12-Dimethylbenzanthracene (DMBA) is a member of the polycyclic aromatic hydrocarbon family. It is a member of the polycyclic aromatic hydrocarbon family. It is a mutagenic, carcinogenic, and immunosuppressor agent. Cannabidiol (CBD) is a phytocannabinoid. It has anticonvulsant, anti-inflammatory, anti-anxiety, antioxidant, and anti-cancer properties. The purpose of this study was to investigate the possible protective and therapeutic benefits of CBD oil in DMBA-induced leukemia in rats.

Method: Experimental animals were divided into six groups of five rats each. Group 1 (normal control) included healthy rats. Group 2 included normal rats that received olive oil. Group 3 included normal rats that received CBD. Group 4 included the DMBA-induced leukemic group. Group 5 (prophylactic group) included rats that received CBD as a prophylaxis before IV injection with DMBA. Group 6 (treated group) included DMBA-induced leukemic rats that received CBD as treatment. Liver functions (total, direct and indirect bilirubin, alkaline phosphatase (ALP), alanine transaminase (ALT), aspartate aminotransferase (AST), albumin, globulin, and albumin globulin ratio) were measured. Superoxide dismutase (SOD) and catalase (CAT) were also measured. Total RNA extraction followed by-real time qRT-PCR gene expression of LC3-II, Beclin, mTOR, and P62 was performed. Histopathological examination of liver and spleen tissues was performed.

Results: Administration of CBD in groups 5 and 6 resulted in a significant improvement of the levels of liver functions compared to the leukemic untreated rats. Also, the levels of catalase and SOD significantly increased after treatment with CBD compared to the leukemic group. After treatment with CBD in groups 5 and 6, there were downregulations in the expression of all studied genes compared to leukemic untreated rats. Treatment with CBD was more statistically effective than prophylactic use.

Conclusion: Administration of CBD resulted in a significant improvement in the biochemical, antioxidant status, morphological, and molecular measures in DMBA-induced leukemia in adult male rats. The therapeutic use was more effective than the prophylactic one.”

https://pubmed.ncbi.nlm.nih.gov/37837474/

https://link.springer.com/article/10.1007/s00210-023-02737-6

Cell death induction and intracellular vesicle formation in human colorectal cancer cells treated with Δ9-Tetrahydrocannabinol

pubmed logo

“Background: Δ9-Tetrahydrocannabinol (Δ9-THC) is a principal psychoactive extract of Cannabis sativa and has been traditionally used as palliative medicine for neuropathic pain. Cannabidiol (CBD), an extract of hemp species, has recently attracted increased attention as a cancer treatment, but Δ9-THC is also requiring explored pharmacological application.

Objective: This study evaluated the pharmacological effects of Δ9-THC in two human colorectal cancer cell lines. We investigated whether Δ9-THC treatment induces cell death in human colorectal cancer cells.

Methods: We performed an MTT assay to determine the pharmacological concentration of Δ9-THC. Annxein V and Western blot analysis confirmed that Δ9-THC induced apoptosis in colorectal cancer cells. Metabolic activity was evaluated using MitoTracker staining and ATP determination. We investigated vesicle formation by Δ9-THC treatment using GW9662, known as a PPARγ inhibitor.

Results: The MTT assay showed that treatment with 40 μM Δ9-THC and above inhibited the proliferation of colorectal cancer cells. Multiple intracytoplasmic vesicles were detected upon microscopic observation, and fluorescence-activated cell sorting analysis showed cell death via G1 arrest. Δ9-THC treatment increased the expression of cell death marker proteins, including p53, cleaved PARP-1, RIP1, and RIP3, suggesting that Δ9-THC induced the death of colorectal cancer cells. Δ9-THC treatment also reduced ATP production via changes in Bax and Bcl-2. Δ9-THC regulated intracytoplasmic vesicle formation by modulating the expression of PPARγ and clathrin, adding that antiproliferative activity of Δ9-THC was also affected.

Conclusion: In conclusion, Δ9-THC regulated two functional mechanisms, intracellular vesicle formation and cell death. These findings can help to determine how cannabinoids can be used most effectively to improve the efficacy of cancer treatment.”

https://pubmed.ncbi.nlm.nih.gov/37837516/

https://link.springer.com/article/10.1007/s13258-023-01466-7