Direct suppression of autoreactive lymphocytes in the central nervous system via the CB2 receptor.

The cannabinoid system is evolutionally conserved and is present in invertebrates and vertebrates. One of the best-studied cannabinoids is Δ9-tetrahydrocannabinol (THC), the predominant active component of Cannabis sativa or marijuana.

The marijuana plant has been exploited by humans since their early history and was used for centuries in Asian medicine to reduce the severity of pain, inflammation and asthma. However, only recently have the mechanisms of the medicinal properties of THC begun to be understood. This understanding is largely due to the identification and cloning of two cannabinoid receptors.

The cannabinoid system is now recognized as a regulator of both the nervous and immune systems.

Although marijuana has been used for centuries for the treatment of a variety of disorders, its therapeutic mechanisms are only now being understood.

The best-studied plant cannabinoid, delta9-tetrahydrocannabinol (THC), produced by Cannabis sativa and found in marijuana, has shown evidence of being immunosuppressive in both in vivo and in vitro.

These studies are theoretically in agreement with the suggestions of others that cannabinoid receptor agonists would be beneficial for the treatment of MS in humans.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2219523/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

CB2 cannabinoid receptors as an emerging target for demyelinating diseases: from neuroimmune interactions to cell replacement strategies

Figure 2

“Amongst the various demyelinating diseases that affect the central nervous system, those induced by an inflammatory response stand out because of their epidemiological relevance. The best known inflammatory-induced demyelinating disease is multiple sclerosis, but the immune response is a common pathogenic mechanism in many other less common pathologies (e.g., acute disseminated encephalomyelitis and acute necrotizing haemorrhagic encephalomyelitis).

In all such cases, modulation of the immune response seems to be a logical therapeutic approach.

Cannabinoids are well known immunomodulatory molecules that act through CB1 and CB2 receptors. While activation of CB1 receptors has a psychotropic effect, activation of CB2 receptors alone does not. Therefore, to bypass the ethical problems that could result from the treatment of inflammation with psychotropic molecules, considerable effort is being made to study the potential therapeutic value of activating CB2 receptors.

In this review we examine the current knowledge and understanding of the utility of cannabinoids as therapeutic molecules for inflammatory-mediated demyelinating pathologies. Moreover, we discuss how CB2 receptor activation is related to the modulation of immunopathogenic states.

The activation of CB2receptors results in the modulation of the inflammatory response, restraining one of the agents responsible for the progress of demyelination and neuronal death, the ultimate causes of the symptoms in pathologies such as MS and EAE.

The modulation of inflammatory molecules through CB2 receptors could also enhance remyelination, stimulating the survival of oligodendrocyte precursors and neural stem/precursor cells, and their development into mature oligodendrocytes.

…this raises the possibility that CB2 agonists could have the potential to promote brain repair.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2219542/#!po=48.0769

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Protective role of cannabinoid receptor type 2 in a mouse model of diabetic nephropathy.

“The cannabinoid receptor type 2 (CB2) has protective effects in chronic degenerative diseases. Our aim was to assess the potential relevance of the CB2 receptor in both human and experimental diabetic nephropathy (DN)…

The CB2 receptor is expressed by podocytes, and in experimental diabetes, CB2 beneficialactivation ameliorates both albuminuria and podocyte protein loss, suggesting a protective effect of signaling through CB2 in DN.

In conclusion, our findings may have important implications for DN. The beneficial effect… makes CB2 agonism an attractive new strategy for the treatment of DN. CB2 activation may also positively affect other diabetes-related complications as CB2 agonists may, under certain conditions, delay progression of atherosclerotic lesions and ameliorate diabetes-induced neuropathic pain…

Our study may thus pave the way for future clinical trials on CB2 agonists in humans.”

 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3161308/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid receptor 2 expression in human proximal tubule cells is regulated by albumin independent of ERK1/2 signaling.

“The cannabinoid receptor type 2 (CB2) is reduced in podocytes of animals and humans with Type 2 Diabetes Mellitus (T2DM), with activation of CB2 ameliorating albuminuria in animals. As albuminuria also is due to proximal tubule dysfunction, the aim of this study is to investigate tubular expression of CB2 under diabetic conditions in addition to the cell signaling pathways that underlie these changes…

We have demonstrated that internalization of albumin is required to reduce CB2 mRNA and protein expression in proximal tubules in vitro. Consequently, altered expression of CB2 in both the podocytes and tubules may contribute to the albuminuria observed in T2DM.”

http://www.ncbi.nlm.nih.gov/pubmed/24280624

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Common polymorphism in the cannabinoid type 1 receptor gene (CNR1) is associated with microvascular complications in type 2 diabetes.

“Endocannabinoids exert their biological effects via interaction with G-protein coupled cannabinoid receptors CB1 and CB2. Polymorphisms in the CNR1 gene (encoding CB1 receptor) were previously found to be associated with dyslipidemia and cardiovascular diseases. We investigated a role of the polymorphism in CNR1 gene in type 2 diabetes and its complications…

The novel finding of our study is the association of the G1359A polymorphism with diabetic nephropathy and diabetic retinopathy in patients with T2DM. This polymorphism was also associated with cardiovascular disease in the patient group.”

http://www.ncbi.nlm.nih.gov/pubmed/24075694

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

CB1 cannabinoid receptors couple to focal adhesion kinase to control insulin release.

“Endocannabinoid signaling has been implicated in modulating insulin release from β cells of the endocrine pancreas. β Cells express CB1cannabinoid receptors (CB1Rs), and the enzymatic machinery regulating anandamide and 2-arachidonoylglycerol bioavailability…

We conclude that FAK downstream from CB1Rs mediates endocannabinoid-induced insulin release by allowing cytoskeletal reorganization that is required for the exocytosis of secretory vesicles.

These findings suggest a mechanistic link between increased circulating and tissue endocannabinoid levels and hyperinsulinemia in type 2 diabetes.”

http://www.ncbi.nlm.nih.gov/pubmed/24089517

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoids alter endothelial function in the Zucker rat model of type 2 diabetes.

“Circulating levels of anandamide are increased in diabetes, and cannabidiol ameliorates a number of pathologies associated with diabetes. The aim of the present study was to examine how exposure to anandamide or cannabidiol might affect endothelial dysfunction associated with Zucker Diabetic Fatty rats…

These studies suggest that increased circulating endocannabinoids may alter vascular function both positively and negatively in type 2 diabetes, and that part of the beneficial effect of cannabidiol in diabetes may be due to improved endothelium-dependent vasorelaxation.”

http://www.ncbi.nlm.nih.gov/pubmed/24120371

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol lowers incidence of diabetes in non-obese diabetic mice.

“Cannabidinoids are components of the Cannabis sativa (marijuana) plant that have been shown capable of suppressing inflammation and various aspects of cell-mediated immunity.

Cannabidiol (CBD), a non-psychoactive cannabinoid has been previously shown by us to suppress cell-mediatedautoimmune joint destruction in an animal model of rheumatoid arthritis.

We now report that CBD treatment significantly reduces the incidence of diabetes in NOD mice from an incidence of 86% in non-treated control mice to an incidence of 30% in CBD-treated mice…

Our results indicate that CBD can inhibit and delay destructive insulitis and inflammatory Th1-associated cytokine production in NOD mice resulting in a decreased incidence of diabetes possibly through an immunomodulatory mechanism shifting the immune response from Th1 to Th2 dominance.”

http://www.ncbi.nlm.nih.gov/pubmed/16698671

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol arrests onset of autoimmune diabetes in NOD mice.

Figure 2

“Cannabidiol (CBD) is a potent anti-inflammatory agent. It is effective in supressing IFN-γ and TNF-α production and progression of autoimmune Th1-mediated rheumatoid arthritis by inhibition of T cell proliferation. This observation led us to investigate the possible effects of CBD on additional autoimmune diseases.

We have previously reported that cannabidiol (CBD) lowers the incidence of diabetes in young non-obese diabetes-prone (NOD) female mice.

In the present study we show that administration of CBD to 11-14 week old female NOD mice… ameliorates the manifestations of the disease…

CBD was extracted from Cannabis resin (hashish)…

Our data strengthen our previous assumption that CBD, known to be safe in man, can possibly be used as a therapeutic agent for treatment of type 1 diabetes.

CBD is not psychoactive and has anti-inflammatory and anti autoimmune properties.

Based on the above presented results, on the previously documented anti-inflammatory effects of CBD and on its clinical safety, it seems reasonable to consider the use of CBD for controlling type 1 diabetes at an early stage of the disease.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2270485/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

A biosynthetic pathway for anandamide

“The endocannabinoid arachidonoyl ethanolamine (anandamide) is a lipid transmitter synthesized and released “on demand” by neurons in the brain. Anandamide is also generated by macrophages where its endotoxin (LPS)-induced synthesis has been implicated in the hypotension of septic shock and advanced liver cirrhosis. Anandamide can be generated from its membrane precursor, N-arachidonoyl phosphatidylethanolamine (NAPE) through cleavage by a phospholipase D (NAPE-PLD).

Here we document a biosynthetic pathway for anandamide in mouse brain…

Both PTPN22 and endocannabinoids have been implicated in autoimmune diseases, suggesting that the PLC/phosphatase pathway of anandamide synthesis may be a pharmacotherapeutic target.

The observed exclusive role of the PLC/phosphatase pathway in LPS-induced AEA synthesis may offer therapeutic targets for the treatment of these conditions.

Furthermore, cannabinoids have immunosuppressive effects in autoimmune models of multiple sclerosis and diabetes, and mice deficient in CB1 receptors show increased susceptibility to neuronal damage found in autoimmune encephalitis…”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1557387/#!po=23.3333

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous