Cannabidiol Attenuates Sensorimotor Gating Disruption and Molecular Changes Induced by Chronic Antagonism of NMDA receptors in Mice.

“Preclinical and clinical data suggest that cannabidiol (CBD), a major non-psychotomimetic compound from Cannabis sativa, induces antipsychotic-like effects…

These results indicate that repeated treatment with CBD, similar to clozapine, reverses the psychotomimetic-like effects and attenuates molecular changes observed after chronic administration of an NMDAR antagonist.

These data support the view that CBD may have antipsychotic properties.”

“Cannabidiol, a Cannabis sativa constituent, as an antipsychotic drug… a controlled clinical trial comparing CBD with an atypical antipsychotic drug have confirmed that this cannabinoid can be a safe and well-tolerated alternative treatment for schizophrenia.”

“A critical review of the antipsychotic effects of cannabidiol: 30 years of a translational investigation… These results support the idea that CBD may be a future therapeutic option in psychosis, in general and in schizophrenia, in particular.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The effects of Δ9-tetrahydrocannabinol and cannabidiol alone and in combination on damage, inflammation and in vitro motility disturbances in rat colitis

“Cannabis is taken as self-medication by patients with inflammatory bowel disease for symptomatic relief.

Cannabinoid receptor agonists decrease inflammation in animal models of colitis, but their effects on the disturbed motility is not known. (-)-Cannabidiol (CBD) has been shown to interact with Δ9-tetrahydrocannabinol (THC) in behavioural studies, but it remains to be established if these cannabinoids interact in vivo in inflammatory disorders.

Therefore the effects of CBD and THC alone and in combination were investigated in a model of colitis…

In this model of colitis, THC and CBD not only reduced inflammation but also lowered the occurrence of functional disturbances. Moreover the combination of CBD and THC could be beneficial therapeutically, via additive or potentiating effects.

As the two phytocannabinoids modulate the immune system and differ in their pharmacological profile, their combination could be more beneficial than either drug alone. Additionally CBD could not only potentiate the therapeutic effects of THC, but also attenuate some of its undesirable effects…”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Protective effects of cannabidiol on lesion-induced intervertebral disc degeneration.

“Disc degeneration is a multifactorial process that involves hypoxia, inflammation, neoinnervation, accelerated catabolism, and reduction in water and glycosaminoglycan content…

Cannabidiol (CBD) is the major nonpsychotropic phytocannabinoid of Cannabis sativa (up to 40% of Cannabis extracts). Contrary to most cannabinoids, CBD does not produce psychotomimetic or cognitive effects. Interesting, in the last years it has been suggest that CBD produces a plethora of others pharmacological effects, including antioxidant, neuroprotective, anti-proliferative, anti-anxiety, hypnotic and antiepileptic, anti-nausea, anti-ischemic, anti-hyperalgesic, and anti-inflammatory…

The present study investigated the effects of cannabidiol intradiscal injection in the coccygeal intervertebral disc degeneration induced by the needle puncture model using magnetic resonance imaging (MRI) and histological analyses…

 Cannabidiol significantly attenuated the effects of disc injury induced by the needle puncture. Considering that cannabidiol presents an extremely safe profile and is currently being used clinically, these results suggest that this compound could be useful in the treatment of intervertebral disc degeneration.

 In summary our study revealed anti-degenerative effects of intradiscal microinjection of CBD 120 nmol. CBD represents one of the most promising candidates present in the Cannabis sativa plant for clinical use due to its remarkable lack of cognitive or psychotomimetic actions.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabidiol protects against doxorubicin-induced cardiomyopathy by modulating mitochondrial function and biogenesis.

“Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX’s cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells, and cell death.

Cannabidiol is a non-psychotropic constituent of marijuana, which is well-tolerated in humans, with antioxidant, anti-inflammatory, and recently discovered antitumor properties.

We aimed to explore the effects of cannabidiol in a well-established mouse model of DOX-induced cardiomyopathy…

Treatment with cannabidiol markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. Cannabidiol also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis.

These data suggest that cannabidiol may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above described effects on mitochondrial function and biogenesis may contribute to its beneficial properties described in numerous other models of tissue injury.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Arachidonoyl-ethanolamide activates endoplasmic reticulum stress-apoptosis in tumorigenic keratinocytes: Role of cyclooxygenase-2 and novel J-series prostamides.

“Non-melanoma skin cancer and other epithelial tumors overexpress cyclooxygenase-2 (COX-2), differentiating them from normal cells…

Arachidonoyl-ethanolamide (AEA) is a cannabinoid that causes apoptosis in diverse tumor types…

These findings suggest that AEA will be selectively toxic in tumor cells that overexpress COX-2 due to the metabolism of AEA by COX-2 to J-series prostaglandin-ethanolamides (prostamides).

Hence, AEA may be an ideal topical agent for the elimination of malignancies that overexpress COX-2.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Activation of cannabinoid receptor 2 attenuates synovitis and joint distruction in collagen-induced arthritis.

“Recent studies have suggested immunomodulatory and anti-inflammatory effects of cannabinoid receptor 2 (CB2R) activation, which is devoid of psychoactivity. We have demonstrated the expression of CB2R in synovial tissue from patients with rheumatoid arthritis (RA), and its specific activation shows inhibitory effects on fibroblast-like synoviocytes. However, it is still unclear whether selective activation of CB2R inhibits joint inflammation or protects joint damage in RA.


Activation of CB2R by HU-308 has therapeutic potential for RA to suppress synovitis and alleviate joint destruction by inhibiting the production of autoantibodies and proinflammatory cytokines.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Endocannabinoids and acute pain after total knee arthroplasty.

“Osteoarthritis (OA) of the knee is a progressive disease that is associated with inflammation of the joints and lower extremity pain. Total knee arthroplasty (TKA) is a surgical procedure that aims to reduce pain and restore motor function in patients suffering from OA. The immediate postoperative period can be intensely painful leading to extended recovery times including persistent pain.

The endocannabinoid system regulates nociception, and the activation of cannabinoid receptors produces antinociceptive effects in preclinical models of OA…

Taken together, our results are the first to reveal associations between central and peripheral endocannabinoid levels and postoperative pain. This suggests that endocannabinoid metabolism may serve as a target for the development of novel analgesics both for systemic or local delivery into the joint.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Proapoptotic effect of endocannabinoids in prostate cancer cells.

“Recent evidence shows that derivatives of Cannabis sativa and its analogs may exert a protective effect against different types of oncologic pathologies.

The purpose of the present study was to detect the presence of cannabinoid receptors (CB1 and CB2) on cancer cells with a prostatic origin and to evaluate the effect of the in vitro use of synthetic analogs…

Based on these results, we suggest that endocannabinoids may be a beneficial option for the treatment of prostate cancer that has become nonresponsive to common therapies.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Role of endocannabinoid signalling in the dorsolateral periaqueductal grey in the modulation of distinct panic-like responses.

“Since the cannabinoid CB1 receptor modulates various types of aversive responses, this study tested the hypothesis that enhancement of endocannabinoid signalling in the dorsolateral periaqueductal grey inhibits panic-like reactions in rats…

The present results confirm the anti-aversive property of direct CB1 receptor activation in the dorsolateral periaqueductal grey…

Altogether, these results suggest that anandamide signalling is recruited only under certain types of aversive stimuli.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid Signaling and Neuroinflammatory Diseases: A Melting pot for the Regulation of Brain Immune Responses.

“The concept of the central nervous system (CNS) as an immune-privileged site, essentially due to the presence of the blood brain barrier, appears to be overly simplistic. Indeed, within healthy CNS immune activities are permitted and are required for neuronal function and host defense, not only due to the presence of the resident innate immune cells of the brain, but also by virtue of a complex cross-talk of the CNS with peripheral immune cells.

Nonetheless, long-standing and persisting neuroinflammatory responses are most often detrimental and characterize several neuroinflammatory diseases, including multiple sclerosis, Alzheimer’s disease and amyotrophic lateral sclerosis.

A growing body of evidence suggests that Cannabis sativa-derived phytocannabinoids, as well as synthetic cannabinoids, are endowed with significant immunoregulatory and anti-inflammatory properties, both in peripheral tissues and in the CNS, through the activation of cannabinoid receptors.

In this review, the immunomodulatory effects of cannabinoid signaling on the most relevant brain immune cells will be discussed. In addition, the impact of cannabinoid regulation on the overall integration of the manifold brain immune responses will also be highlighted, along with the implication of these compounds as potential agents for the management of neuroinflammatory disorders.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous