Folate-chitosan nanoparticle delivery of cannabidiol for targeted triple-negative breast cancer therapy

pubmed logo

“Objectives: Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited treatment options. Cannabidiol (CBD) has demonstrated anticancer potential, but its clinical application is hindered by poor solubility and nonspecific distribution. This study aimed to develop a folic acid-modified chitosan (FA-CS) nanoparticle system to enhance the targeted delivery and therapeutic efficacy of CBD against TNBC.

Methods: FA-CS@CBD nanoparticles were synthesized and characterized for morphology, size distribution, zeta potential, and stability. Their in vitro anticancer effects were evaluated through cytotoxicity, cellular uptake, apoptosis, and reactive oxygen species (ROS) assays in 4T1 breast cancer cells. The in vivo antitumour efficacy and systemic toxicity were assessed using a TNBC mouse model.

Key findings: FA-CS@CBD nanoparticles exhibited uniform morphology, stable physicochemical properties, and efficient cellular uptake. Compared to free CBD, the nanoparticles significantly enhanced ROS production, induced apoptosis, and inhibited migration in 4T1 cells. In vivo studies demonstrated strong tumour-targeting capability and a tumour inhibition rate of 68.07%, with minimal systemic toxicity.

Conclusions: The FA-CS@CBD nanoparticle system improved the targeted delivery and therapeutic effects of CBD against TNBC while maintaining favorable biocompatibility. These findings highlight the potential of FA-CS-based nanocarriers for enhancing CBD clinical application in breast cancer therapy.”

https://pubmed.ncbi.nlm.nih.gov/40838692/

https://academic.oup.com/jpp/advance-article-abstract/doi/10.1093/jpp/rgaf072/8239116?redirectedFrom=fulltext&login=false

Cannabidiol improves learning and memory deficits and alleviates anxiety in 12-month-old SAMP8 mice

pubmed logo

“Cannabidiol (CBD) has gained a lot of interest in recent years for its purported medicinal properties. CBD has been investigated for the treatment of anxiety, depression, epilepsy, neuroinflammation, and pain.

Recently there has been an interest in CBD as a possible treatment for age-related disorders such as Alzheimer’s disease and related disorders (ADRD). Here we tested the hypothesis that chronic CBD administration would improve learning and memory in the SAMP8 mouse model of Alzheimer’s disease.

SAMP8 mice aged 11 months (at the start of the study) were administered vehicle or CBD (3 or 30 mg/Kg) daily via oral gavage for 2 months. Vehicle-treated young SAMP8 mice (age 3 months at the start of the study) served as unimpaired controls. After 30 days of treatment (4 and 12 months of age), learning and memory, activity, anxiety, strength and dexterity were assessed.

High dose CBD treatment significantly improved learning and memory of the 12-month-old mice in the T maze. Novel object recognition memory was also improved by CBD in aged CBD treated mice. Aged CBD treated mice also displayed less anxiety in the elevated plus maze test compared to controls. However, activity and strength levels were similar between groups. Biochemical analysis revealed decreased markers of oxidative stress, providing a possible mechanism by which CBD treatment impacts learning, memory, and anxiety.

These results highlight the potential use of CBD as a therapeutic for age related cognitive impairment and dementia.”

https://pubmed.ncbi.nlm.nih.gov/40811673/

“Cannabidiol (CBD) is an abundant phytocannabinoid found in the Cannabis sativa plant.”

“CBD is thought by many to have medicinal properties. Except for a few conditions including two rare forms of epilepsy and multiple-sclerosis-associate spasticity, CBD has not been approved by the FDA”

“Here, we examine the potential use of CBD in treating age- related memory loss, anxiety, strength and dexterity impairment in the Senescence-accelerated mouse -prone 8(SAMP8) mice, a polygenic model of spontaneous onset AD.”

“Our results indicate that CBD can reverse age-related changes in the SAMP8 mice. CBD reversed memory impairment in both the T-maze and NOR with a 24-hour retention interval. These results indicate that CBD is able to reverse memory impairment in both spatial and recognition tasks. Taken together therefore, there appears to be an antioxidant effect of CBD contributing to the improvement in memory in the aged mice. These results show that CBD is an attractive therapeutic warranting further investigation in AD, and other neurodegenerative diseases.”

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0296586

Neolignans isolated from industrial hemp (Cannabis sativa L.) roots have cytotoxic effects on cancer cells

pubmed logo

“Background: The 2018 Farm Bill states that cultivars of Cannabis sativa L. (industrial hemp) are legal for industrial use if total tetrahydrocannabinol (THC) concentrations are less than 0.30%. Due to this legislation, hemp cultivars with low total THC have found a wide range of uses, from animal feed to paper production. Although cannabinoids are the most widely studied compounds in hemp, hemp produces numerous other compound classes as well, and these phytochemicals may have uses in the functional food and pharmaceutical industry.

Methods: Initial liquid chromatography profiling of hemp root samples revealed a group of uncharacterized peaks, and these peaks were tentatively identified as neolignans by Oribitrap ID-X high resolution mass spectrometer. To further elucidate the structure of these neolignans, we used techniques in liquid-liquid extraction, as well as flash chromatography to isolate them in preparation for NMR analysis. We then tested their inhibitory concentration 50 (IC50) in a variety of cancer cell lines.

Results and discussion: Four neolignans were isolated from hemp roots and each differed in their molecular weight by 30 daltons. Two of the compounds were identified as dadahols A and B. We tested fractions of various purities containing neolignans against neuroblastoma cell lines CHLA15 and LAN5, hepatoblastoma cell line Hep3B, and Hodgkin’s lymphoma cell line L428. We found that semi-pure fractions containing dadahol A and/or dadahol B had the highest cytotoxic activity. We then tested pure dadahol A and dadahol B, and this revealed dadahol A exhibited the lowest IC50 values in all the cell lines.”

https://pubmed.ncbi.nlm.nih.gov/40818965/

“We report, for the first time, that dadahols, using the methodologies described herein, have antiproliferative effects. While our findings demonstrate the cytotoxic effects of hemp-derived compounds on multiple pediatric cancer cell lines, the underlying mechanisms driving these effects remain to be elucidated.”

https://jcannabisresearch.biomedcentral.com/articles/10.1186/s42238-025-00316-5

Therapeutic potential of cannabinoids for treating atopic dermatitis

pubmed logo

“This review aims to assess the therapeutic potential of cannabinoids as complementary treatments for atopic dermatitis. Atopic dermatitis (AD) is a skin disease characterized by the loss of skin barrier function that promotes subsequent symptoms such as intense itching, xerosis and inflammation. Several treatments are available, particularly topical approaches, which are crucial for both acute and chronic management of the disease.

The main objectives of topical treatments are to promote skin hydration and reduce itching and immune responses, typically through lotions and topical medications such as glucocorticoids. However, the long-term use of glucocorticoids presents certain disadvantages, highlighting the need for new therapeutic options to minimize adverse effects and providing a broader range of choices for both physicians and patients to find the best alternative for each case.

Research involving cannabinoids, which can be endogenous, plant-based or synthetic, has intensified in recent years to evaluate the therapeutic potential of these compounds for skin conditions, including AD. Studies suggest that phytocannabinoids such as cannabidiol (CBD) and Δ-9-tetrahydrocannabinol (THC), along with endogenous and synthetic compounds such as palmitoyletanolamide (PEA) and dronabinol, can improve AD symptoms, primarily because of their anti-inflammatory, antipruritic and antioxidant properties. Additionally, some cannabinoids exhibit antimicrobial effects.

Despite these promising results, the use of cannabinoids in AD treatment requires further investigation to better understand their efficiency and safety, necessitating high-accuracy clinical and preclinical trials.”

https://pubmed.ncbi.nlm.nih.gov/40818974/

“Cannabinoids, whether of plant, endogenous, or synthetic origin, clearly possess significant therapeutic potential and should be further explored as complementary treatments for AD. The development of cannabinoid-based formulations for skin conditions is not limited to products classified as medicines by pharmaceutical regulatory agencies, but also includes their use as active ingredients in cosmetic formulations, such as soaps, shampoos, and especially moisturizing lotions and creams, for individuals with AD and other conditions requiring enhanced skin hydration.

Beyond the therapeutical potential of the classical phytocannabinoids CBD and THC, other components such as CBG and CBC have also been investigated for their dermatological benefits, including anti-inflammatory, antibacterial, and antioxidant properties that may contribute to skin health and the treatment of various skin disorders, including AD .”

https://jcannabisresearch.biomedcentral.com/articles/10.1186/s42238-025-00317-4

Potential of Cannabidiol (CBD) to overcome extensively drug-resistant Acinetobacter baumannii

pubmed logo

“Extensively drug-resistant (XDR) Acinetobacter baumannii poses a serious clinical challenge due to its resistance to nearly all available antibiotics, including carbapenems and colistin. Cannabidiol (CBD), a non-psychoactive phytochemical from Cannabis sativa L., has recently shown promising antimicrobial activity.

This study evaluates the antibacterial and anti-biofilm effects of CBD against XDR A. baumannii isolates and explores its mechanism of action and potential as an adjunct therapeutic agent.

Twenty-six A. baumannii isolates collected from ICU medical devices were identified using MALDI-TOF/MS. Antimicrobial susceptibility was assessed by disk diffusion and broth microdilution to determine MICs and MBCs for CBD and standard antibiotics. Synergistic effects were evaluated via checkerboard assays and FICI values. Biofilm inhibition and eradication were assessed using crystal violet and MTT assays. Time-kill studies, membrane integrity assays (DNA/protein leakage, NPN uptake, membrane depolarization), and scanning electron microscopy (SEM) were employed to investigate bactericidal kinetics and membrane-disruptive mechanisms.

CBD exhibited activity against antimicrobial resistance isolates (MIC: 3.9 to > 500 µg/mL). Remarkably, CBD synergized with gentamicin, meropenem, and colistin, reducing their effective concentrations by up to 1,000-fold. Combination therapy significantly inhibited and eradicated biofilms. Time-kill assays demonstrated rapid, concentration-dependent killing, with complete bacterial clearance at 4× MIC within 2 h. Mechanistic assays and SEM confirmed that CBD induces extensive membrane damage.

These findings highlight CBD’s potential as an effective adjunct to conventional antibiotics for treating XDR A. baumannii infections, offering a novel strategy to counteract antimicrobial resistance.”

https://pubmed.ncbi.nlm.nih.gov/40817249/

“Acinetobacter baumannii is an opportunistic, Gram-negative bacterium that has emerged as a major cause of hospital-associated infections (HAIs) worldwide, with no standard therapeutic recommendation for its management and control. It primarily affects critically ill and immunocompromised patients, leading to severe infections such as ventilator-associated pneumonia, bloodstream infections, urinary tract infections, meningitis, and wound infections. A. baumannii’s remarkable ability to survive in hospital environments, resist desiccation, and persist on medical equipment—particularly in intensive care units (ICUs)—makes it a persistent challenge in healthcare settings.”

“Our study demonstrates that CBD exhibits potent antibacterial and anti-biofilm properties against XDR A. baumannii, particularly when used in combination with conventional antibiotics such as gentamicin, meropenem, and colistin. Notably, its ability to disrupt membrane integrity represents a key mechanism in overcoming drug tolerance.

These findings provide a strong foundation for further investigation of CBD as a novel therapeutic strategy to combat antimicrobial resistance in clinical settings.”

https://bmccomplementmedtherapies.biomedcentral.com/articles/10.1186/s12906-025-05056-w

The Role of the Endocannabinoid System in Oncology and the Potential Use of Cannabis Derivatives for Cancer Management in Companion Animals

pubmed logo

“The last decades of research have shown that the endocannabinoid system may be a promising therapeutic target for the pharmacological treatment of cancer in human medicine and possibly in veterinary medicine as well.

Compared with the original cells, the expression of gene encoding for receptors and enzymes belonging to the endocannabinoid system has been found to be altered in several tumor types; it has been hypothesized that this aberrant expression may be related to the course of the neoplasm as well as to the patient’s prognosis.

Several studies, conducted both in vitro and in vivo, suggest that both endo- and phytocannabinoids can modulate signaling pathways, controlling cell proliferation and survival. In the complex process of carcinogenesis, cannabinoids seem to intervene at different levels by stimulating cell death, inhibiting the processes of angiogenesis and metastasis, and regulating antitumor immunity.

Although the molecular mechanisms by which cannabinoids act are not always clear and defined, their synergistic activity with the most used antineoplastic drugs in clinical oncology is showing promising results, thus providing veterinary medicine with alternative therapeutic targets in disease control.

This review aims to summarize current knowledge on the potential role of the endocannabinoid system and exogenous cannabinoids in oncology, with specific reference to the molecular mechanisms by which cannabinoids may exert antitumor activity. Additionally, it explores the potential synergy between cannabinoids and conventional anticancer drugs and considers their application in veterinary oncology.”

https://pubmed.ncbi.nlm.nih.gov/40804975/

“Companion animals are more and more becoming considered family members, and their owners wish to offer them the same level of cure and care expected for a human being. The long life expectancy of dogs and cats is associated with new challenges: veterinary medicine must be prepared to diagnose and treat neoplastic pathology with the same high-standard procedures that are currently used in human medicine.

Chemotherapies aim to prolong as long as possible the life of companion animals affected by cancer, but several side effects can be experienced. Thus, an increasing interest in alternative and complementary treatments has arisen in the last years. Among a wide array, cannabinoids seem to be a promising tool to be included in therapeutic protocols since their administration could assist traditional chemotherapeutic agents, promoting a more successful antineoplastic effect, prolonging the prognosis, and contributing to patient well-being thanks to pain relief.

According to all the aforementioned factors, the present review aims to summarize how the endocannabinoid system and phytocannabinoids interact in the complex process of carcinogenesis, exploring current therapeutical applications and future perspectives in veterinary oncology.”

“From the above paragraphs, it can be concluded that cannabinoids show antitumor activity (decrease in tumor growth and invasiveness) in numerous cell lines and in various animal models of cancer, and that, although clinical studies conducted in human and animal patients are limited, the results obtained so far have demonstrated that cannabinoids appear to be safe and effective antineoplastic agents.

Moreover, most of the preclinical evidence currently available demonstrates that the greatest therapeutic potential of cannabinoids lies in their combination with existing chemotherapeutic drugs.

Interestingly, compared to conventional antineoplastic drugs, which have a plethora of side effects, cannabinoids (especially the non-psychoactive ones, such as CBD) have a broad safety margin. “

https://www.mdpi.com/2076-2615/15/15/2185

Cannabis for female orgasmic disorder/difficulty: a systematic review

pubmed logo

“Background: Cannabis is increasingly recommended to treat female orgasmic disorder/difficulty (FOD/difficulty), a condition that affects up to 41% of women worldwide with no conventional medications.

Aim: To systematically review the existing literature on cannabis and its impact on female orgasm function.

Methods: A systematic review based on the PRISMA model evaluated the effects of cannabis on orgasm function in females with or without FOD/difficulty. Risk of bias was assessed for randomized and nonrandomized studies. Searches were conducted in PubMed, Google Scholar, Cochrane, and Embase.

Outcomes: Primary outcomes focused on the impact of cannabis on female orgasm function.

Results: Sixteen studies met inclusion criteria: 1 randomized controlled trial and 15 observational studies, including data from 8849 females. Most were nonrandomized designs without comparator groups and high risk of bias. Most included both sexes and reported dichotomized outcomes by sex. None excluded females with self-reported orgasm difficulty; 1 controlled for its prevalence; 1 dichotomized females by the presence or absence of orgasm difficulty; and no studies used a clinical diagnosis of FOD. Nine studies investigated cannabis use prior to sexual activity. All 9 studies cited improvements in female orgasm function, including increases in frequency, ease, intensity, quality, and/or multiorgasmic capacity. However, 1 study found cases of situational anorgasmia, and 1 reported that women had more difficulty with focus, potentially leading to orgasm difficulty. Two studies assessed general cannabis use and sexual function: 1 found no association between the frequency of cannabis use and female sexual problems, while the other noted improved orgasm and reduced dysfunction with more frequent use. Five studies examined cannabis alongside other substances, before sex or not: 1 linked inhibited orgasm to combined cannabis and alcohol use, 1 to noncannabis substances, 2 found improved orgasm function with cannabis, and 1 reported improved orgasm function and cases of inability to orgasm due to a lack of focus.

Clinical implications: Cannabis appears to be a promising treatment option for FOD/difficulty.

Strengths and limitations: This review found consistent evidence that cannabis improves orgasm function in females with or without FOD/difficulty. Limitations include insufficient high-quality studies and limited reporting on cannabis dosage and timing.

Conclusion: FOD/difficulty should be recognized as a qualifying condition for medical cannabis use. Given the existing evidence supporting its potential efficacy, medical cannabis warrants consideration as a first-line treatment. More randomized controlled trials are needed to clarify optimal dosing, routes of administration, strain specificity, timing of use, and differential effects across FOD subtypes.”

https://pubmed.ncbi.nlm.nih.gov/40808870/

“Cannabis appears to be a promising treatment for FOD/difficulty, with the majority of studies reviewed reporting improvements in orgasm function and satisfaction among women who use cannabis. These benefits were observed across diverse study designs, populations, and cannabis use contexts. Given this growing body of evidence, FOD/difficulty should be considered a qualifying condition for medical cannabis, and medical cannabis should be evaluated as a potential first-line treatment. These findings suggest a strong association between cannabis use and improved orgasm function, but further RCTs are needed to establish causality and better define key parameters, such as dosage, route of administration, timing of use, strain specificity, and the differential effects on FOD subtypes.”

https://academic.oup.com/smoa/article/13/4/qfaf061/8232583?login=false

Substance Abuse and Cognitive Decline: The Critical Role of Tau Protein as a Potential Biomarker

pubmed logo

“Tau protein is essential for the structural stability of neurons, particularly through its role in microtubule assembly and axonal transport. However, when abnormally hyperphosphorylated or cleaved, Tau can aggregate into insoluble forms that disrupt neuronal function, contributing to the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease (AD).

Emerging evidence suggests that similar Tau-related alterations may occur in individuals with chronic exposure to psychoactive substances. This review compiles experimental, clinical, and postmortem findings that collectively indicate a substance-specific influence on Tau dynamics.

Alcohol and opioids, for instance, promote Tau hyperphosphorylation and fragmentation through the activation of kinases such as GSK-3β and CDK5, as well as proteases like caspase-3, leading to neuroinflammation and microglial activation. Stimulants and dissociatives disrupt insulin signaling, increase oxidative stress, and impair endosomal trafficking, all of which can exacerbate Tau pathology.

In contrast, cannabinoids and psychedelics may exert protective effects by modulating kinase activity, reducing inflammation, or enhancing neuroplasticity.

Psychedelic compounds such as psilocybin and harmine have been demonstrated to decrease Tau phosphorylation and facilitate cognitive restoration in animal models. Although the molecular mechanisms differ across substances, Tau consistently emerges as a convergent target altered in substance-related cognitive disorders.

Understanding these pathways may provide not only mechanistic insights into drug-induced neurotoxicity but also identify Tau as a valuable biomarker and potential therapeutic target for the prevention or treatment of cognitive decline associated with substance use.”

https://pubmed.ncbi.nlm.nih.gov/40806766/

“Alcohol, methamphetamine, and opioids consistently elicited Tau hyperphosphorylation in cortical and subcortical regions tied to executive function, reward processing, and memory. In contrast, certain cannabinoids and psychedelics demonstrated potential neuroprotective properties, modulating Tau-related signaling in ways that reduced aberrant phosphorylation and enhanced synaptic resilience in preclinical models. “

https://www.mdpi.com/1422-0067/26/15/7638

Cannabichromene: integrative modulation of apoptosis, ferroptosis, and endocannabinoid signaling in pancreatic cancer therapy

pubmed logo

“Cannabichromene (CBC: C21H3O2, M.W.: 314.46 g) is a non-psychotropic phytocannabinoid derived from Cannabis sativa (hemp), and its potential therapeutic properties have attracted increasing attention. Specifically, it has demonstrated strong anti-inflammatory effects in animal models of edema through non-CB receptor mechanisms; however, further pharmacological studies based on cancer models are required.

In this study, we investigated the molecular mechanisms underlying the anti-cancer activity of CBC in human pancreatic cancer cells.

Through mRNA-seq analysis, the expression levels of many genes involved in cell death pathways were upregulated or downregulated after CBC treatment, and these included ferroptosis-related genes, such as HMOX1. We further confirmed the functional validity of apoptosis and ferroptosis induction after CBC treatment using various molecular assays. In addition, CBC preferentially increased the expression of TRPV1 and CB2.

Accordingly, the effects on cell death were reversed after treatment with TRPV1 and CB2 inhibitors, suggesting that receptor expression is necessary for the induction of apoptotic cell death. Finally, we confirmed the consistent regulation of apoptosis, ferroptosis, and endocannabinoid receptors during tumor growth inhibition after CBC treatment using in vivo xenograft models.

Therefore, we propose that CBC exhibits pharmacological activity via the integrative modulation of multiple cell death pathways, which can be exploited for pancreatic cancer therapy.”

https://pubmed.ncbi.nlm.nih.gov/40790027/

“Cannabinoids extracted from Cannabis sativa exert their effects by binding to specific receptors that play a role in tissue development and homeostasis maintenance in the human body.”

“CBC treatment induces apoptotic cell death in pancreatic cancer cells”

“Our current study demonstrates that CBC modulates multiple forms of cell death by regulating the expression of proteins involved in both apoptotic and ferroptotic pathways. Although CBC-induced apoptosis was dependent on TRPV1 and CB2 receptors, the ferroptotic pathway appeared to be independent of these receptors.

Accordingly, we propose that CBC exerts its pharmacological effects through the integrative modulation of multiple cell death pathways, which could offer therapeutic benefits for pancreatic cancer treatment.

These results enhance our understanding of how CBC induces diverse cell death mechanisms via ECS receptors, not only in pancreatic cancer but also in other cancer models.

This study provides a promising foundation for the development of cannabinoid-based anti-cancer drugs, offering a new strategy for targeting various types of cancer through the modulation of apoptosis and ferroptosis.”

https://www.nature.com/articles/s41420-025-02674-8

The Endocannabinoid System in PTSD: Molecular Targets for Modulating Fear and Anxiety

pubmed logo

“Fear and anxiety perform essential protective roles, yet when they become dysregulated, they can trap trauma survivors in persistent hypervigilance and distress. Post-traumatic stress disorder (PTSD) manifests as intrusive memories, avoidance, and heightened arousal long after the precipitating event. Although current pharmacotherapies – including selective serotonin reuptake inhibitors, adrenergic blockers, benzodiazepines, and atypical antipsychotics – provide relief for some, many patients contend with residual symptoms or intolerable adverse effects.

Recent discoveries position the endocannabinoid system as a pivotal regulator of fear acquisition, consolidation, and extinction. Clinical observations of altered anandamide levels and cannabinoid receptor CB₁ upregulation in individuals with severe PTSD underscore the therapeutic potential of restoring endocannabinoid tone.

Preclinical studies demonstrate that direct CB₁ agonists, fatty acid amide hydrolase (FAAH) inhibitors, and phytocannabinoids such as tetrahydrocannabinol (THC) and cannabidiol (CBD) can facilitate extinction learning and attenuate anxiety-like behaviours.

Preliminary human trials report that nabilone alleviates trauma-related nightmares and that acute cannabinoid administration modulates amygdala reactivity to a threat. Yet optimal dosing strategies, sex-specific responses, and ideal THC:CBD ratios remain to be defined. Self-medication with cannabis can offer transient relief but carries a risk of cannabis use disorder and potential worsening of PTSD symptoms. By elucidating molecular targets – including CB₁, CB₂, FAAH, and monoacylglycerol lipase – this review outlines a strategic framework for next-generation cannabinoid-based interventions.

Harnessing the endocannabinoid system promises to expand the therapeutic arsenal for PTSD, offering hope for more effective and better-tolerated treatments.”

https://pubmed.ncbi.nlm.nih.gov/40789309/

https://www.thieme-connect.de/products/ejournals/abstract/10.1055/a-2647-8030