Comparison of the in vitro Anti-Inflammatory Effect of Cannabidiol to Dexamethasone

“Background: Cannabidiol (CBD) is a non-psychoactive phytocannabinoid constituent of Cannabis sativa with pain-relieving and anti-inflammatory properties. With the emphasis on natural ingredients in cosmetics, CBD has become a new cosmetic ingredient due to its ability to alleviate inflammation. However, in-depth studies that directly compare the effective mechanism and the therapeutic potential of CBD are still needed.

Purpose: The aim of the present study was to investigate the anti-inflammatory effect of CBD in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and compare it to dexamethasone (DEX).

Methods: RAW264.7 macrophages in the logarithmic growth phase were incubated in the presence or absence of LPS. After that, the production of nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were measured. A luciferase reporter assay for nuclear factor kappa B (NF-κB) was performed, and the phosphorylation levels of the mitogen-activated protein kinase (MAPK) and NF-κB signaling pathways were measured.

Results: The present study indicated that CBD had a similar anti-inflammatory effect to DEX by attenuating the LPS-induced production of NO, IL-6, and TNF-α. However, only CBD attenuated JNK phosphorylation levels, and only DEX attenuated IKK phosphorylation levels.

Conclusion: These results suggested that CBD and DEX exhibit similar anti-inflammatory effects on LPS-induced RAW264.7 macrophages mainly through suppressing the MAPK and NF-κB signaling pathways, but with different intracellular mechanisms. These findings suggested that CBD may be considered a natural anti-inflammatory agent for protecting skin from immune disorders.”

https://pubmed.ncbi.nlm.nih.gov/36159203/

“As alternative and complementary therapies grow in dermatology, plant extracts such as CBD have garnered significant attention in dermatology. The present study provided new insight of CBD against LPS-induced inflammation. Our results suggested that CBD and DEX suppress the LPS-induced activation of the MAPK and NF-κB signaling pathways in RAW264.7 cells through different intracellular components, indicating that the anti-inflammatory biological mechanism of CBD is different from other immuno-suppressants. Because macrophages exert various pro-inflammatory functions through multiple intracellular pathways, further in vivo and in vitro studies are necessary to enrich the theoretical knowledge of CBD and promote its future clinical application.”

https://www.dovepress.com/comparison-of-the-in-vitro-anti-inflammatory-effect-of-cannabidiol-to–peer-reviewed-fulltext-article-CCID

Terpenes and Cannabinoids in Supercritical CO 2 Extracts of Industrial Hemp Inflorescences: Optimization of Extraction, Antiradical and Antibacterial Activity

pharmaceuticals-logo

“Natural products are increasingly in demand in dermatology and cosmetology. In the present study, highly valuable supercritical CO2 (sCO2) extracts rich in bioactive compounds with antiradical and antibacterial activity were obtained from the inflorescences of industrial hemp. Volatile compounds were analyzed by gas chromatography in tandem with mass spectrometry (GC-MS), while cannabinoids were determined by high performance liquid chromatography (HPLC-DAD). Extraction yields varied from 0.75 to 8.83%, depending on the pressure and temperature applied. The extract obtained at 320 bar and 40 °C with the highest content (305.8 µg mg-1) of cannabidiolic acid (CBDA) showed the best antiradical properties. All tested extract concentrations from 10.42 µg mL-1 to 66.03 µg mL-1 possessed inhibitory activities against E. coliP. aeruginosa, B. subtilis, and S. aureus. The sCO2 extract with the highest content of cannabidiol (CBD) and rich in α-pinene, β-pinene, β-myrcene, and limonene was the most effective. The optimal conditions for sCO2 extraction of cannabinoids and volatile terpenes from industrial hemp were determined. The temperature of 60 °C proved to be optimal for all responses studied, while the pressure showed a different effect depending on the compounds targeted. A low pressure of 131.2 bar was optimal for the extraction of monoterpenes, while extracts rich in sesquiterpenes were obtained at 319.7 bar. A high pressure of 284.78 bar was optimal for the extraction of CBD.”

https://pubmed.ncbi.nlm.nih.gov/36145338/

https://www.mdpi.com/1424-8247/15/9/1117

Cannabidiol Inhibits Inflammation Induced by Cutibacterium acnes-Derived Extracellular Vesicles via Activation of CB2 Receptor in Keratinocytes

“Background: Acne is a common inflammatory skin disease, while cannabidiol (CBD) is a representative non-psychoactive phytocannabinoid which has been proved to exert universal anti-inflammatory properties. This study aimed to explore the effect of CBD on acne inflammation induced by Cutibacterium acnes-derived extracellular vesicles (CEVs) in keratinocytes and reveal the underlying mechanisms.

Results: The expression of inflammatory cytokines (IL-6, IL-8 and TNF-α) in CEVs-stimulated NHEKs was suppressed by CBD. CB2 receptor expression was upregulated by CBD, whereas CEVs-promoted TRPV1 expression was downregulated by CBD. AM630 reversed TNF-α levels inhibited by CBD. Capsazepine exerted an inhibitory effect on CEVs-induced inflammation and had synergistic effect with CBD. The phosphorylation of ERK1/2 and NF-κB p65 and nuclear translocation of NF-κB p65 were induced by CEVs but reduced by CBD.

Conclusion: The results indicated that CBD could inhibit inflammation induced by CEVs in NHEKs, which was mediated by activation of CB2 receptor and enhanced by the TRPV1 antagonist, through inactivation of the MAPK and NF-κB signaling pathways. CBD might be a potential novel strategy for acne treatment in the future.”

https://pubmed.ncbi.nlm.nih.gov/35982758/

“In conclusion, our results provided the evidence that CBD exerted an inhibitory effect on acne inflammation in keratinocytes induced by CEVs, which was mediated by CB2 receptor and through inactivating the MAPK and NF-κB signaling pathways. The TRPV1 antagonist Capsazepine had synergistic effect with CBD, but whether TRPV1 directly mediated the anti-inflammatory action of CBD still remains to be confirmed. Besides, the regulatory effect of CB2 receptor and TRPV1 on the MAPK and NF-κB signaling pathways in the acne model should also be further unraveled. Despite several limitations above, our study proposes the anti-acne property of CBD and a potent novel therapeutic approach for acne.”

https://www.dovepress.com/cannabidiol-inhibits-inflammation-induced-by-cutibacterium-acnes-deriv-peer-reviewed-fulltext-article-JIR

Topical cannabidiol (CBD) in skin pathology – A comprehensive review and prospects for new therapeutic opportunities

“Humans have utilised cannabis products in various forms throughout the recorded history. To date, more than 500 biologically active components have been identified in the plants of the Cannabis genus, amongst which more than 100 were classified as phytocannabinoids (exocannabinoids).

The plant genus Cannabis is a member of the plant family Cannabaceae, and there are three primary cannabis species which vary in their biochemical constituents: Cannabis sativa, Cannabis indica and Cannabis ruderalis. There has been a growing level of interest in research on the topical usage of a cannabis-based extract as a safer and more effective alternative to the usage of topical corticosteroids in treating some dermatoses.

Together with the discovery of the cannabinoid receptors on the skin, it has been further illustrated that topical cannabis has anti-inflammatory, anti-itching, analgesics, wound healing and anti-proliferative effects on the skin.”

https://pubmed.ncbi.nlm.nih.gov/35695447/

https://safpj.co.za/index.php/safpj/article/view/5493

The Anti-Inflammatory Effects of Cannabidiol (CBD) on Acne



“Acne is the most common skin condition in the United States and affects approximately 85% of people ages 12-24. As a multifactorial disease, the pathogenesis of acne involves overproduction of sebum, irregular shedding of the cutaneous cells, accretion of Cutibacterium acnes at the pilosebaceous unit, and inflammation. To date, conventional therapies for acne include topical retinoids, over-the-counter bactericidal agents, and systematic treatments, such as oral antibiotics and isotretinoin. However, the potential for significant side effects and risk of antibiotic resistance remain limitations in these therapies, in turn reducing patient compliance and adherence to acne treatment regimens. Therefore, the use of natural plant-derived treatments or phytotherapeutics as an alternative or adjuvant to conventional treatments is attractive to patients due to their safety and minimal risk for side effects. Cannabidiol (CBD) is a non-psychoactive phytocannabinoid of the Cannabis sativa (hemp) plant. The therapeutic use of CBD has been implicated in many diseases with an inflammatory aspect, including cancers, neurodegeneration, immunological disorders, and dermatological diseases. However, the use of CBD for acne treatment remains a novel window of opportunity. Herein, we summarize the available and relevant data, highlighting the potential use of CBD in acne for its anti-inflammatory properties. To that extent, CBD and other cannabis constituents such as cannabis seeds were found to reduce inflammation and expression of inflammatory cytokines including TNF-α and IL-1β when evaluated in acne-like conditions. Treatment with these cannabis extracts was also found to be safe and well tolerated, further strengthening the prospect of CBD as an anti-inflammatory therapeutic for acne.”

https://pubmed.ncbi.nlm.nih.gov/35535052/

https://www.dovepress.com/the-anti-inflammatory-effects-of-cannabidiol-cbd-on-acne-peer-reviewed-fulltext-article-JIR


Cannabis sativa and Skin Health: Dissecting the Role of Phytocannabinoids

“The use of Cannabis sativa is currently recognized to ease certain types of chronic pain, reduce chemotherapy-induced nausea, and improve anxiety. Nevertheless, few studies highlighted the therapeutic potential of C. sativa extracts and related phytocannabinoids for a variety of widespread skin disorders including acne, atopic dermatitis, psoriasis, pruritus, and pain. This review summarized the current evidence on the effects of phytocannabinoids at the cutaneous level through the collection of in vitro, in vivo, and clinical studies published on PubMed, Scopus, Embase, and Web of Science until October 2020.

Phytocannabinoids have demonstrated potential anti-inflammatory, antioxidant, anti-aging, and anti-acne properties by various mechanisms involving either CB1/2-dependent and independent pathways.

Not only classical immune cells, but also several skin-specific actors, such as keratinocytes, fibroblasts, melanocytes, and sebocytes, may represent a target for phytocannabinoids. Cannabidiol, the most investigated compound, revealed photoprotective, antioxidant, and anti-inflammatory mechanisms at the cutaneous level, while the possible impact on cell differentiation, especially in the case of psoriasis, would require further investigation. Animal models and pilot clinical studies supported the application of cannabidiol in inflammatory-based skin diseases. Also, one of the most promising applications of non-psychotropic phytocannabinoids is the treatment of seborrheic disorders, especially acne. In conclusion, the incomplete knowledge of the role of the endocannabinoid system in skin disorders emerged as an important limit for pharmacological investigations. Moreover, the limited studies conducted on C. sativa extracts suggested a higher potency than single phytocannabinoids, thus stimulating new research on phytocannabinoid interaction.”

https://pubmed.ncbi.nlm.nih.gov/33851375/

https://www.thieme-connect.de/products/ejournals/abstract/10.1055/a-1420-5780


The Endocannabinoid System: A Potential Target for the Treatment of Various Diseases

ijms-logo“The Endocannabinoid System (ECS) is primarily responsible for maintaining homeostasis, a balance in internal environment (temperature, mood, and immune system) and energy input and output in living, biological systems.

In addition to regulating physiological processes, the ECS directly influences anxiety, feeding behaviour/appetite, emotional behaviour, depression, nervous functions, neurogenesis, neuroprotection, reward, cognition, learning, memory, pain sensation, fertility, pregnancy, and pre-and post-natal development.

The ECS is also involved in several pathophysiological diseases such as cancer, cardiovascular diseases, and neurodegenerative diseases. In recent years, genetic and pharmacological manipulation of the ECS has gained significant interest in medicine, research, and drug discovery and development.

The distribution of the components of the ECS system throughout the body, and the physiological/pathophysiological role of the ECS-signalling pathways in many diseases, all offer promising opportunities for the development of novel cannabinergic, cannabimimetic, and cannabinoid-based therapeutic drugs that genetically or pharmacologically modulate the ECS via inhibition of metabolic pathways and/or agonism or antagonism of the receptors of the ECS. This modulation results in the differential expression/activity of the components of the ECS that may be beneficial in the treatment of a number of diseases.

This manuscript in-depth review will investigate the potential of the ECS in the treatment of various diseases, and to put forth the suggestion that many of these secondary metabolites of Cannabis sativa L. (hereafter referred to as “C. sativa L.” or “medical cannabis”), may also have potential as lead compounds in the development of cannabinoid-based pharmaceuticals for a variety of diseases.”

https://pubmed.ncbi.nlm.nih.gov/34502379/

https://www.mdpi.com/1422-0067/22/17/9472

 

“Cannabis sativa L. as a Natural Drug Meeting the Criteria of a Multitarget Approach to Treatment”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7830475/

Mechanisms of Cannabinoids and Potential Applicability to Skin Diseases.

SpringerLink“The legalisation of cannabis in a growing number of jurisdictions has led to increasing interest in its potential therapeutic effects in a range of disorders, including cutaneous conditions. Cannabinoids have been used as natural medicines for centuries; however, their biological activity in the skin is a new area of study.

Recent data suggest that cannabinoids are involved in neuro-immuno-endocrine modulation of skin functioning, yet their effect on the features of dermatologic conditions is unclear. This article sought to review the mechanisms by which cannabinoids regulate skin functioning through the lens of relevance to treatment of dermatologic diseases looking at the effects of cannabinoids on a range of cellular activities and dermatologic conditions both in vitro and in vivo.

We identified studies demonstrating an inhibitory effect of cannabinoids on skin inflammation, proliferation, fibrosis, pain, and itch-biological mechanisms involved in the pathogenesis of many dermatologic conditions.

Cannabinoids have the potential to expand the therapeutic repertoire of a wide spectrum of skin disorders. Given their widespread unregulated use by the general public, basic and clinical studies are required to elucidate the effectiveness and long-term effects of topical and systemic cannabinoids in cutaneous disorders.”

“The endocannabinoid system of the skin. A potential approach for the treatment of skin disorders.” https://www.ncbi.nlm.nih.gov/pubmed/30138623

Cannabinoids in the Pathophysiology of Skin Inflammation.

molecules-logo“Cannabinoids are increasingly-used substances in the treatment of chronic pain, some neuropsychiatric disorders and more recently, skin disorders with an inflammatory component.

This paper aims to detail and clarify the complex workings of cannabinoids in the molecular setting of the main dermatological inflammatory diseases, and their interactions with other substances with emerging applications in the treatment of these conditions. Also, the potential role of cannabinoids as antitumoral drugs is explored in relation to the inflammatory component of skin cancer.

In vivo and in vitro studies that employed either phyto-, endo-, or synthetic cannabinoids were considered in this paper. Cannabinoids are regarded with growing interest as eligible drugs in the treatment of skin inflammatory conditions, with potential anticancer effects, and the readiness in monitoring of effects and the facility of topical application may contribute to the growing support of the use of these substances.

Despite the promising early results, further controlled human studies are required to establish the definitive role of these products in the pathophysiology of skin inflammation and their usefulness in the clinical setting.”

https://www.ncbi.nlm.nih.gov/pubmed/32033005

https://www.mdpi.com/1420-3049/25/3/652

“Cannabinoid Signaling in the Skin: Therapeutic Potential of the “C(ut)annabinoid” System” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6429381/

The potential role of cannabinoids in dermatology.

 Publication Cover“Cannabis is increasingly being used world-wide to treat a variety of dermatological conditions. Medicinal cannabis is currently legalized in Canada, 31 states in America and 19 countries in Europe. The authors reviewed the literature on the pharmacology and use of cannabinoids in treating a variety of skin conditions including acne, atopic dermatitis, psoriasis, skin cancer, pruritus, and pain. Cannabinoids have demonstrated anti-inflammatory, antipruritic, anti-ageing, and antimalignancy properties by various mechanisms including interacting with the newly found endocannabinoid system of the skin thereby providing a promising alternative to traditional treatments.”

https://www.ncbi.nlm.nih.gov/pubmed/31599175

https://www.tandfonline.com/doi/abs/10.1080/09546634.2019.1675854?journalCode=ijdt20