Study of Cannabis Oils Obtained from Three Varieties of C. sativa and by Two Different Extraction Methods: Phytochemical Characterization and Biological Activities

plants-logo

“Currently, much effort is being placed into obtaining extracts and/or essential oils from Cannabis sativa L. for specific therapeutic purposes or pharmacological compositions. These potential applications depend mainly on the phytochemical composition of the oils, which in turn are determined by the type of C. sativa and the extraction method used to obtain the oils.

In this work, we have evaluated the contents of secondary metabolites, delta-9-tetrahydrocannabinol (THC), and cannabidiol (CBD), in addition to the total phenolic, flavonoids, and anthraquinone content in oils obtained using solid-liquid extraction (SLE) and supercritical fluid extraction (SCF). Different varieties of C. sativa were chosen by using the ratio of THC to CBD concentrations. Additionally, antioxidant, antifungal and anticancer activities on different cancer cell lines were evaluated in vitro.

The results indicate that oils extracted by SLE, with high contents of CBD, flavonoids, and phenolic compounds, exhibit a high antioxidant capacity and induce a high decrease in the cell viability of the tested breast cancer cell line (MCF-7). The observed biological activities are attributed to the entourage effect, in which CBD, phenols and flavonoids play a key role. Therefore, it is concluded that the right selection of C. sativa variety and the solvent for SLE extraction method could be used to obtain the optimal oil composition to develop a natural anticancer agent.”

https://pubmed.ncbi.nlm.nih.gov/37176831/

“Different varieties of C. sativa identified by the ratio of THC:CBD were used to extract cannabis oil using two extraction methods. The evaluation of the biological activities of the oils indicates that they are mostly determined by their chemical composition. For example, all Cannabis oils exhibit an antioxidant capacity and antiproliferative effects on tested cancer cell lines. In both types of experiments, the most active Cannabis oil tested was M4, suggesting a direct relationship between its antioxidant capacity and cancer cell cytotoxicity. In addition, M4 exhibits a high selectivity against breast cancer cell lines, and, therefore, Cannabis oils can be considered potential anticancer agents.”

https://www.mdpi.com/2223-7747/12/9/1772

Cannabinoid compounds in combination with curcumin and piperine display an anti-tumorigenic effect against colon cancer cells

pubmed logo

“Currently, use of cannabinoids is limited to improve adverse effects of chemotherapy and their palliative administration during treatment is curiously concomitant with improved prognosis and regressed progression in patients with different tumor types. Although, non-psychoactive cannabidiol (CBD) and cannabigerol (CBG) display antineoplastic effects by repressing tumor growth and angiogenesis both in cell line and animal models, their use as chemotherapeutic agents is awaiting further investigation. Both clinical and epidemiological evidence supported by experimental findings suggest that micronutrients such as curcumin and piperine may present a safer strategy in preventing tumorigenesis and its recurrence. Recent studies demonstrated that piperine potentiates curcumin’s inhibitory effect on tumor progression via enhancing its delivery and therapeutic activity. In this study, we investigated a plausible therapeutic synergism of a triple combination of CBD/CBG, curcumin, and piperine in the colon adenocarcinoma using HCT116 and HT29 cell lines. Potential synergistic effects of various combinations including these compounds were tested by measuring cancer cell proliferation and apoptosis. Our findings revealed that different genetic backgrounds of HCT116 and HT29 cell lines resulted in divergent responses to the combination treatments. Triple treatment showed synergism in terms of exhibiting anti-tumorigenic effects by activating the Hippo YAP signaling pathway in the HCT116 cell line.”

https://pubmed.ncbi.nlm.nih.gov/37180710/

“This study demonstrates that combination of curcumin, piperine and cannabinoid variants inhibit cell proliferation and induce apoptosis drastically in distinct models of colorectal cancer. Intriguingly, our findings point out that the compounds of interest, each of which are already known for their anti-tumorigenic and preventive role in colon cancer as single agents, displayed an augmented therapeutic effect in the cell lines tested. In the HT29 cell line, CBG significantly reduced cell proliferation and induced apoptosis as a monotherapy agent, whereas these anti-tumorigenic effects were overridden in the presence of curcumin/piperine. Therefore, findings from this study suggest a benefit in using cannabinoid compounds as single anti-cancer agents in the treatment of those colon carcinoma tumors that carry a genetic profile similar to that of the HT29 cell line. One major limitation of the current study was to reconcile these findings with the cannabinoid receptor 1 (CB1 receptor) and cannabinoid receptor 2 (CB2 receptor) expression profile of the cell lines used. Therefore, in future studies the link between the anti-tumorigenic effects of single cannabinoid compounds or their cocktails and the cannabinoid receptor expression should be interrogated to shed light on the differences in the responses of these cells to distinct cannabinoid-based regimens. In addition to the cannabinoid receptor status, role of other mutations in driver genes should be subject to more rigorous mechanistic studies to fully understand their role in determining the drug mechanism of action and the response to distinct treatment schemes involving cannabinoids as single agents their various combinations.”

https://www.frontiersin.org/articles/10.3389/fphar.2023.1145666/full

Cannabidiol as a Promising Adjuvant Therapy for Estrogen Receptor-Positive Breast Tumors: Unveiling Its Benefits with Aromatase Inhibitors

cancers-logo

“Background: Estrogen receptor-positive (ER+) breast cancer is the most diagnosed subtype, with aromatase inhibitors (AIs) being one of the therapeutic drug types used in the clinic. However, endocrine resistance may develop after prolonged treatment, and different approaches, such as combining endocrine and targeted therapies, have been applied. Recently, we demonstrated that cannabidiol (CBD) induces anti-tumor actions in ER+ breast cancer cells by targeting aromatase and ERs. Considering this, we studied, in vitro, whether CBD when combined with AIs could improve their effectiveness.

Methods: MCF-7aro cells were used and the effects on cell viability and on the modulation of specific targets were investigated.

Results: CBD when combined with anastrozole (Ana) and letrozole (Let) caused no beneficial effect in comparison to the isolated AIs. In contrast, when combined with the AI exemestane (Exe), CBD potentiated its pro-cell death effects, abolished its estrogen-like effect, impaired ERα activation, and prevented its oncogenic role on the androgen receptor (AR). Moreover, this combination inhibited ERK1/2 activation, promoting apoptosis. The study of the hormonal microenvironment suggests that this combination should not be applied in early stages of ER+ breast tumors.

Conclusions: Contrary to Ana and Let, this study highlights the potential benefits of combining CBD with Exe to improve breast cancer treatment and opens up the possibility of new therapeutic approaches comprising the use of cannabinoids.”

https://pubmed.ncbi.nlm.nih.gov/37173983/

“Cannabidiol (CBD) has demonstrated important anti-tumor effects on ER+ breast cancer cells. Considering this, our goal was to evaluate the effects of combining CBD with the AIs currently in use in the clinical context. Our results revealed that CBD may be particularly beneficial when combined with the AI exemestane (Exe), since it potentiates the anti-tumor effects of Exe through the modulation of cell death and specific targets, including ERα and androgen receptor (AR). This reinforces the beneficial potential of cannabinoids in breast cancer and points to the possibility of improving Exe effects through an adjuvant therapy with CBD.”

https://www.mdpi.com/2072-6694/15/9/2517

The Anti-Tumorigenic Role of Cannabinoid Receptor 2 in Non-Melanoma Skin Cancer

ijms-logo

“Five million non-melanoma skin cancers occur globally each year, and it is one of the most common malignant cancers. The dysregulation of the endocannabinoid system, particularly cannabinoid receptor 2 (CB2), is implicated in skin cancer development, progression, and metastasis. Comparing wildtype (WT) to systemic CB2 knockout (CB2-/-) mice, we performed a spontaneous cancer study in one-year old mice, and subsequently used the multi-stage chemical carcinogenesis model, wherein cancer is initiated by 7,12-dimethylbenz[a]anthracene (DMBA) and promoted by 12-O-tetradecanoylphorbol-13-acetate (TPA). We found that aging CB2-/- mice have an increased incidence of spontaneous cancerous and precancerous skin lesions compared to their WT counterparts. In the DMBA/TPA model, CB2-/- developed more and larger papillomas, had decreased spontaneous regression of papillomas, and displayed an altered systemic immune profile, including upregulated CD4+ T cells and dendritic cells, compared to WT mice. Immune cell infiltration in the tumor microenvironment was generally low for both genotypes, although a trend of higher myeloid-derived suppressor cells was observed in the CB2-/- mice. CB2 expression in carcinogen-exposed skin was significantly higher compared to naïve skin in WT mice, suggesting a role of CB2 on keratinocytes. Taken together, our data show that endogenous CB2 activation plays an anti-tumorigenic role in non-melanoma skin carcinogenesis, potentially via an immune-mediated response involving the alteration of T cells and myeloid cells coupled with the modulation of keratinocyte activity.”

https://pubmed.ncbi.nlm.nih.gov/37175480/

“We show that endogenous CB2 activation lowers the risk for spontaneous cancer development in aging mice and papilloma development in a chemically-induced model of skin carcinogenesis. CB2 activation can modulate the systemic immune response and reduce tumorigenesis, either by an immune-mediated response involving the alteration of T cells and myeloid cells, or by the modulation of keratinocyte proliferation. This implies that CB2 could have an anti-tumorigenic role in skin cancer and serve as a potential treatment target.”

https://www.mdpi.com/1422-0067/24/9/7773

Neuronal Cannabinoid CB1 Receptors Suppress the Growth of Melanoma Brain Metastases by Inhibiting Glutamatergic Signalling

cancers-logo

“Melanoma is one of the deadliest forms of cancer. Most melanoma deaths are caused by distant metastases in several organs, especially the brain, the so-called melanoma brain metastases (MBMs). However, the precise mechanisms that sustain the growth of MBMs remain elusive. Recently, the excitatory neurotransmitter glutamate has been proposed as a brain-specific, pro-tumorigenic signal for various types of cancers, but how neuronal glutamate shuttling onto metastases is regulated remains unknown. Here, we show that the cannabinoid CB1 receptor (CB1R), a master regulator of glutamate output from nerve terminals, controls MBM proliferation. First, in silico transcriptomic analysis of cancer-genome atlases indicated an aberrant expression of glutamate receptors in human metastatic melanoma samples. Second, in vitro experiments conducted on three different melanoma cell lines showed that the selective blockade of glutamatergic NMDA receptors, but not AMPA or metabotropic receptors, reduces cell proliferation. Third, in vivo grafting of melanoma cells in the brain of mice selectively devoid of CB1Rs in glutamatergic neurons increased tumour cell proliferation in concert with NMDA receptor activation, whereas melanoma cell growth in other tissue locations was not affected. Taken together, our findings demonstrate an unprecedented regulatory role of neuronal CB1Rs in the MBM tumour microenvironment.”

https://pubmed.ncbi.nlm.nih.gov/37173906/

https://www.mdpi.com/2072-6694/15/9/2439

A Phase I Dose Escalation and Expansion Study of Epidiolex (Cannabidiol) in Patients with Biochemically Recurrent Prostate Cancer

cancers-logo

“Purpose: Cannabinoids (CBD) have anti-tumor activity against prostate cancer (PCa). Preclinical studies have demonstrated a significant decrease in prostate specific antigen (PSA) protein expression and reduced tumor growth in xenografts of LNCaP and DU-145 cells in athymic mice when treated with CBD. Over-the-counter CBD products may vary in activity without clear standardization, and Epidiolex is a standardized FDA-approved oral CBD solution for treatment of certain types of seizures. We aimed to assess the safety and preliminary anti-tumor activity of Epidiolex in patients with biochemically recurrent (BCR) PCa.

Experimental design: This was an open-label, single center, phase I dose escalation study followed by a dose expansion in BCR patients after primary definitive local therapy (prostatectomy +/- salvage radiotherapy or primary definitive radiotherapy). Eligible patients were screened for urine tetrahydrocannabinol prior to enrollment. The starting dose level of Epidiolex was 600 mg by mouth once daily and escalated to 800 mg daily with the use of a Bayesian optimal interval design. All patients were treated for 90 days followed by a 10-day taper. The primary endpoints were safety and tolerability. Changes in PSA, testosterone levels, and patient-reported health-related quality of life were studied as secondary endpoints.

Results: Seven patients were enrolled into the dose escalation cohort. There were no dose-limiting toxicities at the first two dose levels (600 mg and 800 mg). An additional 14 patients were enrolled at the 800 mg dose level into the dose expansion cohort. The most common adverse events were 55% diarrhea (grade 1-2), 25% nausea (grade 1-2), and 20% fatigue (grade 1-2). The mean PSA at baseline was 2.9 ng/mL. At the 12-week landmark time-point, 16 out of 18 (88%) had stable biochemical disease, one (5%) had partial biochemical response with the greatest measurable decline being 41%, and one (5%) had PSA progression. No statistically significant changes were observed in patient-reported outcomes (PROs), but PROs changed in the direction of supporting the tolerability of Epidiolex (e.g., emotional functioning improved).

Conclusion: Epidiolex at a dose of 800 mg daily appears to be safe and tolerable in patients with BCR prostate cancer supporting a safe dose for future studies.”

https://pubmed.ncbi.nlm.nih.gov/37173971/

“Cannabinoids have been widely used for pain, nausea, and appetite stimulation, and have also shown anti-tumor activity in preclinical studies of prostate cancer. Epidiolex is an oral cannabidiol solution that is FDA approved for the treatment of certain types of seizures in patients one year of age and older. We studied phase I Epidiolex dose escalation followed by dose expansion in patients with biochemically recurrent prostate cancer. A total of 21 patients were enrolled. No dose-limiting toxicities were observed at any dose level. The recommended phase 2 dose was 800 mg daily. An additional 14 patients were enrolled in the dose expansion. The most common adverse events were 55% diarrhea (grade 1–2), 25% nausea (grade 1–2), and 20% fatigue (grade 1–2). Epidiolex at a dose of 800 mg daily appears to be safe and tolerable in patients with BCR prostate cancer, supporting a safe dose for future studies.”

https://www.mdpi.com/2072-6694/15/9/2505

Antitumor mechanism of cannabidiol hidden behind cancer hallmarks

Biochimica et Biophysica Acta (BBA) - Reviews on Cancer

“Cannabinoids have been utilized for recreational and therapeutic purposes for over 4,000 years. As the primary ingredient in exogenous cannabinoids, Cannabidiol (CBD) has drawn a lot of interest from researchers due to its negligible psychotropic side effects and potential tumor-suppressing properties. However, the obscure mechanisms that underlie them remain a mystery. Complex biological mechanisms are involved in the progression of cancer, and malignancies have a variety of acquired biological capabilities, including sustained proliferation, death evasion, neovascularization, tissue invasion and metastasis, immune escape, metabolic reprogramming, induction of tumor-associated inflammation, cancerous stemness and genomic instability. Nowadays, the role of CBD hidden in these hallmarks is gradually revealed. Nevertheless, flaws or inconsistencies in the recent studies addressing the anti-cancer effects of CBD still exist. The purpose of this review is to evaluate the potential mechanisms underlying the role of CBD in a range of tumor-acquired biological capabilities. We propose potential drugs that may have a synergistic effect with CBD and provide optional directions for future research.”

https://pubmed.ncbi.nlm.nih.gov/37164234/

https://www.sciencedirect.com/science/article/abs/pii/S0304419X23000549?via%3Dihub

Therapeutic targeting of the tumor microenvironments with cannabinoids and their analogs: Update on clinical trials

pubmed logo

“Cancer is a major global public health concern that affects both industrialized and developing nations. Current cancer chemotherapeutic options are limited by side effects, but plant-derived alternatives and their derivatives offer the possibilities of enhanced treatment response and reduced side effects.

A plethora of recently published articles have focused on treatments based on cannabinoids and cannabinoid analogs and reported that they positively affect healthy cell growth and reverse cancer-related abnormalities by targeting aberrant tumor microenvironments (TMEs), lowering tumorigenesis, preventing metastasis, and/or boosting the effectiveness of chemotherapy and radiotherapy.

Furthermore, TME modulating systems are receiving much interest in the cancer immunotherapy field because it has been shown that TMEs have significant impacts on tumor progression, angiogenesis, invasion, migration, epithelial to mesenchymal transition, metastasis and development of drug resistance.

Here, we have reviewed the effective role of cannabinoids, their analogs and cannabinoid nano formulations on the cellular components of TME (endothelial cells, pericytes, fibroblast and immune cells) and how efficiently it retards the progression of carcinogenesis is discussed. The article summarizes the existing research on the molecular mechanisms of cannabinoids regulation of the TME and finally highlights the human studies on cannabinoids’ active interventional clinical trials.

The conclusion outlines the need for future research involving clinical trials of cannabinoids to demonstrate their efficacy and activity as a treatment/prevention for various types of human malignancies.”

https://pubmed.ncbi.nlm.nih.gov/37146933/

https://www.sciencedirect.com/science/article/abs/pii/S0013935123006540?via%3Dihub

Medical cannabis is effective for cancer-related pain: Quebec Cannabis Registry results

pubmed logo

“Objectives: To evaluate the safety and effectiveness of medical cannabis (MC) in reducing pain and concurrent medications in patients with cancer.

Methods: This study analysed data collected from patients with cancer who were part of the Quebec Cannabis Registry. Brief Pain Inventory (BPI), revised Edmonton Symptom Assessment System (ESAS-r) questionnaires, total medication burden (TMB) and morphine equivalent daily dose (MEDD) recorded at 3-month, 6-month, 9-month and 12-month follow-ups were compared with baseline values. Adverse events were also documented at each follow-up visit.

Results: This study included 358 patients with cancer. Thirteen out of 15 adverse events reported in 11 patients were not serious; 2 serious events (pneumonia and cardiovascular event) were considered unlikely related to MC. Statistically significant decreases were observed at 3-month, 6-month and 9-month follow-up for BPI worst pain (5.5±0.7 baseline, 3.6±0.7, 3.6±0.7, 3.6±0.8; p<0.01), average pain (4.1±0.6 baseline, 2.4±0.6, 2.3±0.6, 2.7±0.7; p<0.01), overall pain severity (3.7±0.5 baseline, 2.3±0.6, 2.3±0.6, 2.4±0.6; p<0.01) and pain interference (4.3±0.6 baseline, 2.4±0.6, 2.2±0.6, 2.4±0.7, p<0.01). ESAS-r pain scores decreased significantly at 3-month, 6-month and 9-month follow-up (3.7±0.6 baseline, 2.5±0.6, 2.2±0.6, 2.0±0.7, p<0.01). THC:CBD balanced strains were associated with better pain relief as compared with THC-dominant and CBD-dominant strains. Decreases in TMB were observed at all follow-ups. Decreases in MEDD were observed at the first three follow-ups.

Conclusions: Real-world data from this large, prospective, multicentre registry indicate that MC is a safe and effective complementary treatment for pain relief in patients with cancer. Our findings should be confirmed through randomised placebo-controlled trials.”

https://pubmed.ncbi.nlm.nih.gov/37130724/

https://spcare.bmj.com/content/early/2023/04/11/spcare-2022-004003

Repositioning Cannabinoids and Terpenes as Novel EGFR-TKIs Candidates for Targeted Therapy Against Cancer: A virtual screening model using CADD and biophysical simulations

pubmed logo

“This study examines the potential of Cannabis sativa L. plants to be repurposed as therapeutic agents for cancer treatment through designing of hybrid Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). A set of 50 phytochemicals was taken from Cannabinoids and Terpenes and subjected for screening using Semi-flexible and Flexible Molecular Docking methods, MM-GBSA free binding energy computations, and pharmacokinetic/pharmacodynamic (ADME-Tox) predictions.

Nine promising phytochemicals, Cannabidiolic acid (CBDA), Cannabidiol (CBD), Tetrahydrocannabivarin (THCV), Dronabinol (Δ-9-THC), Delta-8-Tetrahydrocannabinol (Δ-8-THC), Cannabicyclol (CBL), Delta9-tetrahydrocannabinolic acid (THCA), Beta-Caryophyllene (BCP), and Gamma-Elemene (γ-Ele) were identified as potential EGFR-TKIs natural product candidates for cancer therapy.

To further validate these findings, a set of Molecular Dynamics simulations were conducted over a 200 ns trajectory. This hybrid early drug discovery screening strategy has the potential to yield a new generation of EGFR-TKIs based on natural cannabis products, suitable for cancer therapy. In addition, the application of this computational strategy in the virtual screening of both natural and synthetic chemical libraries could support the discovery of a wide range of lead drug agents to address numerous diseases.”

https://pubmed.ncbi.nlm.nih.gov/37128337/

https://www.cell.com/heliyon/fulltext/S2405-8440(23)02752-4?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2405844023027524%3Fshowall%3Dtrue