A zebrafish HCT116 xenograft model to predict anandamide outcomes on colorectal cancer

Cell Death & Disease

“Colon cancer is one of the leading causes of death worldwide. In recent years, cannabinoids have been extensively studied for their potential anticancer effects and symptom management. Several in vitro studies reported anandamide’s (AEA) ability to block cancer cell proliferation and migration, but evidence from in vivo studies is still lacking. Thus, in this study, the effects of AEA exposure in zebrafish embryos transplanted with HCT116 cells were evaluated.

Totally, 48 hpf xenografts were exposed to 10 nM AEA, 10 nM AM251, one of the cannabinoid 1 receptor (CB1) antagonist/inverse agonists, and to AEA + AM251, to verify the specific effect of AEA treatment. AEA efficacy was evaluated by confocal microscopy, which demonstrated that these xenografts presented a smaller tumor size, reduced tumor angiogenesis, and lacked micrometastasis formation.

To gain deeper evidence into AEA action, microscopic observations were completed by molecular analyses. RNA seq performed on zebrafish transcriptome reported the downregulation of genes involved in cell proliferation, angiogenesis, and the immune system. Conversely, HCT116 cell transcripts resulted not affected by AEA treatment. In vitro HCT116 culture, in fact, confirmed that AEA exposure did not affect cell proliferation and viability, thus suggesting that the reduced tumor size mainly depends on direct effects on the fish rather than on the transplanted cancer cells.

AEA reduced cell proliferation and tumor angiogenesis, as suggested by socs3 and pcnp mRNAs and Vegfc protein levels, and exerted anti-inflammatory activity, as indicated by the reduction of il-11a, mhc1uba, and csf3b mRNA. Of note, are the results obtained in groups exposed to AM251, which presence nullifies AEA’s beneficial effects.

In conclusion, this study promotes the efficacy of AEA in personalized cancer therapy, as suggested by its ability to drive tumor growth and metastasis, and strongly supports the use of zebrafish xenograft as an emerging model platform for cancer studies.”

https://pubmed.ncbi.nlm.nih.gov/36564370/

“Collectively, our data suggest a pivotal role of AEA in the anti-angiogenic, anti-proliferative, and anti-inflammatory process in intercellular tumor-endothelial cell communication resulting in the containment of tumor and evidenced that zebrafish larvae xenografts constitute a promising fast assay for precision medicine, bridging the gap between genotype and phenotype in an in vivo setting.”

https://www.nature.com/articles/s41419-022-05523-z

Cannabidiol and Its Combinations with Nonsteroidal Anti-Inflammatory Drugs Induce Apoptosis and Inhibit Activation of NF-κB Signaling in Vulvar Squamous Cell Carcinoma

molecules-logo

“Vulvar squamous cell carcinoma (VSCC) is a rare malignancy with a relatively good prognosis. However, the prognosis remains poor for elderly patients and those with a significant depth of tumor invasion; thus, novel treatment modalities are needed.

The aim of this study was to analyze the impact of cannabidiol (CBD) and its combination with NSAIDs, diclofenac (DIC) and ibuprofen (IBU) on VSCC cells. In this regard, the MTT test was applied for cytotoxicity analysis. Moreover, the influence of CBD, DIC and IBU, as well as their combinations, on apoptosis and cell cycle distribution were analyzed by flow cytometry. The mechanisms of action of the analyzed compounds, including their impact on NF-κB signaling, p53 and COX-2 expression were evaluated using Western blot.

This study shows that CBD and its combinations with NSAIDs are cytotoxic to A431 cells, but they also reduce, in a dose-dependent manner, the viability of immortalized keratinocyte HaCaT cells, and human umbilical vein cell line, EA.hy926. Moreover, the compounds and their combinations induced apoptosis, diminished the NF-κB signaling activation and reduced COX-2 expression.

We conclude that CBD and its combination with DIC or IBU are promising candidates for the adjuvant treatment of high-risk VSCC patients.”

https://pubmed.ncbi.nlm.nih.gov/36557911/

“The results of our study regarding the use of a CDB and NSAIDs, as well as the combi-treatment of CBD together with NSAIDs, provide the foundation for a new approach to therapy of VSCC.”

https://www.mdpi.com/1420-3049/27/24/8779

Real-Time Monitoring of the Cytotoxic and Antimetastatic Properties of Cannabidiol in Human Oral Squamous Cell Carcinoma Cells Using Electric Cell-Substrate Impedance Sensing

ijms-logo

“Cannabidiol (CBD) is an active natural compound that is extracted from Cannabis sativa. Previous studies show that CBD is a nonpsychotropic compound with significant anticancer effects.

This study determines its cytotoxic effect on oral cancer cells and OEC-M1 cells and compares the outcomes with a chemotherapeutic drug, cisplatin. This study has investigated the effect of CBD on the viability, apoptosis, morphology, and migration of OEC-M1 cells. Electric cell-substrate impedance sensing (ECIS) is used to measure the change in cell impedance for cells that are treated with a series concentration of CBD for 24 h.

AlamarBlue and annexin V/7-AAD staining assays show that CBD has a cytotoxic effect on cell viability and induces cell apoptosis. ECIS analysis shows that CBD decreases the overall resistance and morphological parameters at 4 kHz in a concentration-dependent manner. There is a significant reduction in the wound-healing recovery rate for cells that are treated with 30 μM CBD.

This study demonstrates that ECIS can be used for in vitro screening of new chemotherapy and is more sensitive, functional, and comprehensive than traditional biochemical assays. CBD also increases cytotoxicity on cell survival and the migration of oral cancer cells, so it may be a therapeutic drug for oral cancer.”

https://pubmed.ncbi.nlm.nih.gov/36555480/

“In conclusion, this study determines the effect of CBD on OEC-M1 cells. The cytotoxicity results show that CBD at higher concentrations (100 μM) increases cytotoxicity and is more likely to lead to the apoptosis of cancer cells more than cisplatin at the same concentration. ECIS is used to determine the effect of the drug on the adhesion, spread, and migration of cells.

The results show that there is a linear, concentration-dependent decrease in OEC-M1 cells that are treated with CBD. Treatment with CBD at low concentrations (30 μM) completely inhibits cell migration and micromotion without affecting cell viability and apoptosis.

In comparison with cisplatin, this study shows that CBD has a greater ability to inhibit metastasis and trigger apoptosis. It might work successfully as a treatment for oral cancer.

We can also screen drugs more efficiently and rapidly by using the Var32 analysis method in combination with ECIS. ECIS provides a more precise measurement of experimental data and prevents operator errors by its real-time monitoring. It is promising for possible uses in new drug screening, and it might promote the development of oral cancer treatments and other medical applications.”

https://www.mdpi.com/1422-0067/23/24/15842

Study of potential inhibition of the estrogen receptor α by cannabinoids using an in silico approach: Agonist vs antagonist mechanism

Computers in Biology and Medicine

“Breast cancer is the main cancer type with more than 2.2 million cases in 2020, and is the principal cause of death in women; with 685000 deaths in 2020 worldwide. The estrogen receptor is involved at least in 70% of breast cancer diagnoses, and the agonist and antagonist properties of the drug in this receptor play a pivotal role in the control of this illness.

This work evaluated the agonist and antagonist mechanisms of 30 cannabinoids by employing molecular docking and dynamic simulations. Compounds with docking scores < -8 kcal/mol were analyzed by molecular dynamic simulation at 300 ns, and relevant insights are given about the protein’s structural changes, centered on the helicity in alpha-helices H3, H8, H11, and H12.

Cannabicitran was the cannabinoid that presented the best relative binding-free energy (-34.96 kcal/mol), and based on rational modification, we found a new natural-based compound with relative binding-free energy (-44.83 kcal/mol) better than the controls hydroxytamoxifen and acolbifen. Structure modifications that could increase biological activity are suggested.”

https://pubmed.ncbi.nlm.nih.gov/36543006/

https://www.sciencedirect.com/science/article/abs/pii/S0010482522011118?via%3Dihub

The use of medical cannabis concomitantly with immune checkpoint inhibitors in non-small cell lung cancer: A sigh of relief?

European Journal of Cancer

“Background: The use of medical cannabis has rapidly increased among cancer patients worldwide. Cannabis is often administered concomitantly with cancer medications, including immune checkpoint inhibitors (ICIs). As the cannabinoid receptors are abundantly expressed and modulate immune cells, it has been hypothesised that cannabis may attenuate the activity of ICIs. We aimed to assess the effect of cannabis on ICIs’ efficiency in patients having non-small cell lung cancer (NSCLC).

Method: The murine model of CT26 tumour-bearing mice treated with an anti-PD-1 antibody and Δ9-tetrahydrocannabinol (THC) was used to evaluate the interaction between THC and ICIs in vivo. Correlation between use of medical cannabis and clinical outcome was evaluated in a cohort of 201 consecutive metastatic NSCLC patients treated with monotherapy pembrolizumab as a first-line treatment.

Results: Median overall survival (OS) of the mice receiving a control vehicle, THC, anti-PD-1 antibody or their combination was 21, 24, 31 and 54 days, respectively (p < 0.05 for the combination treatment compared to a control vehicle), indicating that THC did not reduce the efficacy of anti-PD-1 therapy. Of 201 NSCLC patients treated with first-line monotherapy pembrolizumab for metastatic disease, 102 (50.7%) patients received licence for cannabis within the first month of treatment. Cannabis-treated patients were younger compared to the cannabis naïve patients (median age 68 versus 74, p = 0.003), with female predominance (62, 60.8% versus 34, 34.3%, p = 0.002) and with more prevailing brain metastasis (15.7% versus 5%, p = 0.013). Similar distribution of histology, smoking status, ECOG (Eastern Cooperative Oncology Group) and programmed death-ligand 1 expression was noted between the groups. Liver metastases were marginally significant (19.6% versus 10.1%, p = 0.058). The most common indication for cannabis was pain (71%) followed by loss of appetite (34.3%). Time to tumour progression was similar for cannabis-naive and cannabis-treated patients (6.1 versus 5.6 months, respectively, 95% confidence interval, 0.82 to 1.38, p = 0.386), while OS was numerically higher in the cannabis-naive group (54.9 versus 23.6 months) but did not reach statistical significance (95% confidence interval 0.99 to 2.51, p = 0.08). In multivariate analyses, we did not identify cannabis use as an independent predictor factor for mortality.

Conclusions: Preclinical and clinical data suggest no deleterious effect of cannabis on the activity of pembrolizumab as first-line monotherapy for advanced NSCLC. The differences in OS can most likely be attributed to higher disease burden and more symptomatic disease in the cannabis-treated group. These data provide reassurance regarding the absence of a deleterious effect of cannabis in this clinical setting.”

https://pubmed.ncbi.nlm.nih.gov/36535195/

https://www.ejcancer.com/article/S0959-8049(22)01767-1/fulltext


The role of Cannabidiol and tetrahydrocannabivarin to overcome doxorubicin resistance in MDA-MB-231 xenografts in athymic nude mice

Biochimie

“The significant resistance to currently available chemotherapeutics makes treatment for TNBC a key clinical concern. Herein, we studied the anti-cancer potentials of synthetic cannabidiol (CBD) and Tetrahydrocannabivarin (THCV) when used alone or in combination with doxorubicin (DOX) against MDA-MB-231 resistant cells. Pre-treatment with CBD and THCV significantly increased the cytotoxicity of DOX in MDA-MB-231 2D and 3D cultures that were DOX-resistant. Transcriptomics and Proteomics studies revealed that CBD and THCV, by downregulating PD-L1, TGF-β, sp1, NLRP3, P38-MAPK, and upregulating AMPK induced apoptosis leading to improved DOX’s chemosensitivity against DOX resistant MDA-MB-231 tumors in BALB/c nude mice. CBD/THCV in combination with DOX significantly inhibited H3k4 methylation and H2K5 acetylation as demonstrated by western blotting and RT-PCR. Based on these findings, CBD and THCV appear to counteract histone modifications and their subsequent effects on DOX, resulting in chemo-sensitization against MDA-MB-231 resistant cancers.”

https://pubmed.ncbi.nlm.nih.gov/36535544/

“Cannabis anecdotally has been a folklore medicine for a longtime to treat a variety of disease states. In recent years, the therapeutic use of cannabis and cannabinoids has garnered more acceptance in the public domain. Several Phyto-cannabinoids are available from the the plant Cannabis sativa along with terpenes and they target the endocannabinoid system and several other biological pathways. Hence, these agents can possibly have a array of therapeutic effects on the central nervous system and peripheral immune, cardiovascular, reproductive, and ocular systems.

Our findings show that CBD and THCV were found to overcome resistance against MDA-MB-231 resistant cell line in vitro in 2D and 3D cultures by several folds. Further, both these agents in combination with DOX showed synergism as determined by the isobolographic method.”

https://www.sciencedirect.com/science/article/abs/pii/S0300908422003327?via%3Dihub

Selective Cytotoxicity of Medical Cannabis ( Cannabis sativa L.) Extracts Across the Whole Vegetation Cycle Under Various Hydroponic and Nutritional Treatments

View details for Cannabis and Cannabinoid Research cover image

“Introduction: The use of Cannabis sativa L. in health care requires stringent care for the optimal production of the bioactive compounds. However, plant phenotypes and the content of secondary metabolites, such as phytocannabinoids, are strongly influenced by external factors, such as nutrient availability. It has been shown that phytocannabinoids can exhibit selective cytotoxicity against various cancer cell lines while protecting healthy tissue from apoptosis. 

Research Aim: This study aimed to clarify the cytotoxic effect of cannabis extracts on colorectal cell lines by identifying the main active compounds and determining their abundance and activity across all developmental stages of medical cannabis plants cultivated under hydroponic conditions. 

Materials and Methods: Dimethyl sulfoxide extracts of medical cannabis plants bearing the genotype classified as chemotype I were analyzed by high-performance liquid chromatography, and their cytotoxic activity was determined by measuring cell viability by methylthiazolyldiphenyl-tetrazolium bromide assay on the human colon cancer cell lines, Caco-2 and HT-29, and the normal human epithelial cell line, CCD 841 CoN. 

Results: The most abundant phytocannabinoid in cannabis extracts was tetrahydrocannabinolic acid (THCA). Its maximum concentrations were reached from the 7th to the 13th plant vegetation week, depending on the nutritional cycle and treatment. Almost all extracts were cytotoxic to the human colorectal cancer (CRC) cell line HT-29 at lower concentrations than the other cell lines. The phytocannabinoids that most affected the cytotoxicity of individual extracts on HT-29 were cannabigerol, Δ9-tetrahydrocannabinol, cannabidiol, cannabigerolic acid, and THCA. The tested model showed almost 70% influence of these cannabinoids. However, THCA alone influenced the cytotoxicity of individual extracts by nearly 65%. 

Conclusions: Phytocannabinoid extracts from plants of the THCA-dominant chemotype interacted synergistically and showed selective cytotoxicity against the CRC cell line, HT-29. This positive extract response indicates possible therapeutic value.”

https://pubmed.ncbi.nlm.nih.gov/36459627/

https://www.liebertpub.com/doi/10.1089/can.2022.0243


In Silico Binding Analysis of Cannabinoids with Eph Receptors for Therapeutic Use in Gliomas

pubmed logo

“Background: Accumulating evidence suggests overexpression of Eph receptors is associated with malignant human gliomas. Inhibiting interactions of Eph receptors with their ephrin ligands may improve clinical outcomes in glioma patients. The present study investigated the potential of cannabinoids to bind Eph receptors and block Eph/ephrin interactions.

Methods: Twelve major cannabinoids were computationally docked with ligand binding domains from six glioma-associated Eph receptors through Auto Dock Vina to measure their potential binding affinities. The molecular structures and residue interactions of the most favorable poses for each receptor binding domain were further visually examined.

Results: Cannabichromene (CBC) exhibited the most favorable binding with EphA2, EphA3, and EphB4 receptor ligand binding domains while tetrahydrocannabinol (THC) was predicted to bind favorably with EphB2 and EphB3 receptor ligand binding domains. EphA4 showed the best potential binding affinity with cannabidivarin (CBDV). Further analysis revealed that these cannabinoids bind to specific locations on Eph receptors required for Eph/ephrin interactions.

Conclusion: The findings suggest that certain cannabinoids can effectively bind to hydrophobic pockets required for ephrin binding and thereby be used to block subsequent Eph/ephrin interactions.”

https://pubmed.ncbi.nlm.nih.gov/36468933/

Antitumor Effects of Delta (9)-Tetrahydrocannabinol and Cannabinol on Cholangiocarcinoma Cells and Xenograft Mouse Models

logo

“Cholangiocarcinoma (CCA) is a very aggressive tumor. The development of a new therapeutic drug for CCA is required.

This study aims to evaluate the antitumor effect of ∆9-tetrahydrocannabinol (THC), the major psychoactive component of marijuana (Cannabis sativa), and cannabinol (CBN), a minor, low-psychoactive cannabinoid, on CCA cells and xenograft mice.

THC and CBN were isolated, and their identities were confirmed by comparing 1H- and 13C-NMR spectra and mass spectra with a database. Cell proliferation, cell migration, and cell apoptosis assays were performed in HuCCT1 human CCA cells treated with THC or CBN. The phosphorylation of signaling molecules in HuCCT1 cells was detected. To determine the effects of THC and CBN in an animal model, HuCCT1 cells were inoculated subcutaneously into nude mice. After the tumors reached an appropriate size, the mice were treated with THC or CBN for 21 days. Tumor volumes were monitored and calculated. The 1H- and 13C-NMR data of THC and CBN were almost identical to those reported in the literature.

THC and CBN significantly inhibited cell proliferation and migration and induced apoptosis in HuCCT1 cells. The phosphorylation of AKT, GSK-3α/β, and ERK1/2 decreased in HuCCT1 cells treated with THC or CBN. CCA xenograft mice treated with THC showed significantly slower tumor progression and smaller tumor volumes than control mice. THC and CBN induced apoptosis in CCA by inhibiting the AKT and MAPK pathways.

These findings provide a strong rationale for THC and CBN as therapeutic options for CCA.”

https://pubmed.ncbi.nlm.nih.gov/36452140/

“THC and CBN induced apoptosis in CCA by inhibiting the AKT and MAPK pathways, leading to a decrease in cell proliferation in vitro and tumor volume in vivo. In addition, in this animal model, THC appeared to be superior in potency to CBN. These findings provide a strong rationale for THC and CBN as therapeutic options for CCA.”

https://www.hindawi.com/journals/ecam/2022/6477132/

Antitumorigenic Effect of Cannabidiol in Lung Cancer: What Do We Know So Far?-A Mini Review

pubmed logo

“Background: Lung cancer remains a major factor contributing to morbidity and mortality worldwide. Apart from the chemotherapeutic agents in routine use, factors targeting novel molecular pathways are in clinical trials and provide hope for terminal lung cancer patients. The endocannabinoid system has recently become a popular field of study. Many experimental studies have shown that CBD and THC could be used outside of palliative care, as they play a major role in lung cancer cell apoptosis. The objective of this review is to evaluate the antitumorigenic mechanisms of CBD in lung cancer cells.

Methods: We searched the databases MEDLINE, clinicaltrials.gov, CENTRAL, and google scholar using specific terms. A total of 246 studies were screened, and nine studies were included in the review. All the selected studies were conducted in vitro, and four of which also had an in vivo component. Included studies were assessed in our review using the ToxRTool.

Results and conclusion: The most common cell line used in all of the studies was A549; however, some studies included other cell lines, including H460 and H358. We concluded that CBD has direct antineoplastic effects on lung cancer cells by various mechanisms mediated by cannabinoid receptors or independent of them. All studies referred to an in vitro model; hence, further research is required for this data to have any clinical application.”

https://pubmed.ncbi.nlm.nih.gov/36437760/