Gene Profiling of Cannabis-sativa-mediated Apoptosis in Human Melanoma Cells

Anticancer Research: 43 (3)

“Background/aim: Malignant melanoma is an aggressive skin cancer, accounting for the majority of skin cancer deaths. Prognosis is often poor and finding effective treatment remains a challenge. Tetrahydrocannabinol (THC) and cannabidiol (CBD) are main bioactive components of Cannabis sativa plant extracts that have been shown to exert anti-tumor effects. In this study, we aimed to perform gene expression analysis of human melanoma A375 cells following stimulation with C. sativa extracts.

Materials and methods: Gene expression profiles of A375 human melanoma and Vero (control) cell lines were evaluated by RNA sequencing and quantitative real-time PCR.

Results: Flow cytometry showed that the THC+CBD cannabis fractions induced apoptosis on A375 cells. Induction of apoptosis was accompanied by a notable up-regulation of DNA damage inducible transcript 3 (DDIT), nerve growth factor receptor (NGFR), colony-stimulating factor 2 (CSF2), growth arrest and DNA damage inducible beta (GADD45B), and thymic stromal lymphopoietin (TSLP) genes and down-regulation of aryl hydrocarbon receptor nuclear translocator 2 (ARNT2), cyclin E2 (CCNE2), integrin subunit alpha 9 (ITGA9), proliferating cell nuclear antigen (PCNA) and E2F transcription factor 1 (E2F1) genes. Treatment of A375 cells with the THC+CBD fraction inhibited the phosphorylation of ERK1/2 signaling pathway, which regulates melanoma cell proliferation. We showed that the THC+CBD combination disrupted melanoma cell migration.

Conclusion: Use of C. sativa-derived extracts containing equal amounts of THC and CBD is proposed as a potential treatment of melanoma.”

https://pubmed.ncbi.nlm.nih.gov/36854502/

https://ar.iiarjournals.org/content/43/3/1221

The synergistic anticancer effect of CBD and DOX in osteosarcoma

SpringerLink

“Background: Osteosarcoma is a malignant tumor that can present with pain in the bones, joints, and local masses. The incidence is highest in adolescents, and the most common sites are the distal femur, proximal tibia and proximal humerus metaphyseal. Doxorubicin is the first-line chemotherapeutic agent for the treatment of osteosarcoma, but it has many side effects. Cannabidiol is a non-psychoactive plant cannabinoid cannabinol (CBD) that has been shown to be effective against osteosarcoma; however, the molecular targets and mechanisms of CBD action in osteosarcoma remain unclear.

Methods: Cell proliferation, migration, invasion and colony formation were analyzed using two drugs alone or in combination to evaluate their inhibitory effects on the malignant characteristics of OS cells. Apoptosis and the cell cycle were detected by flow cytometry. The synergistic inhibitory effect of doxorubicin/cannabidiol on tumors was also detected in nude mouse xenotransplantation models.

Results: Through analysis of two osteosarcoma cell lines, MG63 and U2R, it was found that the cannabidiol/doxorubicin combination treatment synergistically inhibited growth, migration and invasion and induced apoptosis, blocking G2 stagnation in OS cells. Further mechanistic exploration suggests that the PI3K-AKT-mTOR pathway and MAPK pathway play an important role in the synergistic inhibitory effect of the two drugs in osteosarcoma. Finally, in vivo experimental results showed that the cannabidiol/doxorubicin combination treatment significantly reduced the number of tumor xenografts compared to cannabidiol alone or doxorubicin alone.

Conclusions: Our findings in this study suggest that cannabidiol and doxorubicin have a synergistic anticancer effect on OS cells, and their combined application may be a promising treatment strategy for OS.”

https://pubmed.ncbi.nlm.nih.gov/36848028/

https://link.springer.com/article/10.1007/s12094-023-03119-3

Phytocannabinoids in Triple Negative Breast Cancer Treatment: Current Knowledge and Future Insights

Anticancer Research: 43 (3)

“Triple negative breast cancer (TNBC) represents an aggressive subtype of breast cancer, which is deficient in estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. Thus, TNBC cells are unable to respond to the conventional hormonal therapies, making chemotherapy the only therapeutic choice. Patients with TNBC develop metastasis and recurrence over time and have reduced survival compared to patients with other subtypes of breast cancer. Therefore, there is a need for innovative therapies. Data emerged from pre-clinical studies, highlighted various antitumor activities of plant-derived Cannabis sativa and synthetic cannabinoids (CBs), including delta-9-tetrahydrocannabinol (THC) and non-psychoactive cannabidiol (CBD). On the contrary, some studies indicated that CBs might also promote tumor progression. At present, clinical studies on the effects of CBs from Cannabis sativa in cancer patients are few. In the present study, we reviewed known and possible interactions between cannabinoids and TNBC therapies.”

https://pubmed.ncbi.nlm.nih.gov/36854495/

“Overall, apart from the need for other studies aimed to dissect the molecular pathways underlying the antitumor CBs’ properties, phytocannabinoids should be considered as potential agents for inhibiting TNBC progression.”

https://ar.iiarjournals.org/content/43/3/993

A Descriptive Review of Cannabis sativa Patents for Cancer Treatment

Generic placeholder image

“Background: Cannabis use for tumor treatment has been explored in several areas, and its potential for tumor remission is currently being studied after the discovery of the endogenous cannabinoid.

Objective: The study aimed to conduct a critical patent review to identify and explore the latest advances and therapeutic strategies using cannabis to treat cancer.

Methods: The research was carried out in the free and online database Espacenet, using the descriptors “cancer” and “Cannabis or cannabidiol” in the title or abstract. A total of 95 patents were identified for preliminary evaluation in the database. Six duplicate patents were excluded, 12 referring to traditional Chinese medicine and 36 with a title in disagreement with the scope of this review. In addition the final selection involved 21 patents that were in line with the objective of the study.

Results: As observed in the reading of patents, the interest of pharmaceutical industries and researchers and the development of new products to fight cancer have increased in recent years. The main cannabinoids present in the patents are tetrahydrocannabinol, cannabidiol, and hemp. Moreover, the patents were classified and the main applicant countries were the United States followed by Japan, with a higher filing rate in 2019 and, mainly by the industry.

Conclusion: In conclusion we can say that, the importance of parliamentary approval in the cultivation and investments that, in addition to bringing innovation to the industrial sector, enriches research in the area, contributing to the creation of new medicines.”

https://pubmed.ncbi.nlm.nih.gov/36788702/

https://www.eurekaselect.com/article/129435

The Anti-Tumorigenic Role of Cannabinoid Receptor 2 in Colon Cancer: A Study in Mice and Humans

ijms-logo

“The endocannabinoid system, particularly cannabinoid receptor 2 (CB2 in mice and CNR2 in humans), has controversial pathophysiological implications in colon cancer.

Here, we investigate the role of CB2 in potentiating the immune response in colon cancer in mice and determine the influence of CNR2 variants in humans. Comparing wild-type (WT) mice to CB2 knockout (CB2-/-) mice, we performed a spontaneous cancer study in aging mice and subsequently used the AOM/DSS model of colitis-associated colorectal cancer and a model for hereditary colon cancer (ApcMin/+). Additionally, we analyzed genomic data in a large human population to determine the relationship between CNR2 variants and colon cancer incidence.

Aging CB2-/- mice exhibited a higher incidence of spontaneous precancerous lesions in the colon compared to WT controls. The AOM/DSS-treated CB2-/- and ApcMin/+CB2-/- mice experienced aggravated tumorigenesis and enhanced splenic populations of immunosuppressive myeloid-derived suppressor cells along with abated anti-tumor CD8+ T cells. Importantly, corroborative genomic data reveal a significant association between non-synonymous variants of CNR2 and the incidence of colon cancer in humans.

Taken together, the results suggest that endogenous CB2 activation suppresses colon tumorigenesis by shifting the balance towards anti-tumor immune cells in mice and thus portray the prognostic value of CNR2 variants for colon cancer patients.”

https://pubmed.ncbi.nlm.nih.gov/36835468/

https://www.mdpi.com/1422-0067/24/4/4060

Characterization of the Antitumor Potential of Extracts of Cannabis sativa Strains with High CBD Content in Human Neuroblastoma

ijms-logo

“Cannabis has been used for decades as a palliative therapy in the treatment of cancer. This is because of its beneficial effects on the pain and nausea that patients can experience as a result of chemo/radiotherapy. Tetrahydrocannabinol and cannabidiol are the main compounds present in Cannabis sativa, and both exert their actions through a receptor-mediated mechanism and through a non-receptor-mediated mechanism, which modulates the formation of reactive oxygen species. These oxidative stress conditions might trigger lipidic changes, which would compromise cell membrane stability and viability.

In this sense, numerous pieces of evidence describe a potential antitumor effect of cannabinoid compounds in different types of cancer, although controversial results limit their implementation. In order to further investigate the possible mechanism involved in the antitumoral effects of cannabinoids, three extracts isolated from Cannabis sativa strains with high cannabidiol content were analyzed. Cell mortality, cytochrome c oxidase activity and the lipid composition of SH-SY5Y cells were determined in the absence and presence of specific cannabinoid ligands, with and without antioxidant pre-treatment.

The cell mortality induced by the extracts in this study appeared to be related to the inhibition of the cytochrome c oxidase activity and to the THC concentration. This effect on cell viability was similar to that observed with the cannabinoid agonist WIN55,212-2. The effect was partially blocked by the selective CB1 antagonist AM281, and the antioxidant α-tocopherol. Moreover, certain membrane lipids were affected by the extracts, which demonstrated the importance of oxidative stress in the potential antitumoral effects of cannabinoids.”

https://pubmed.ncbi.nlm.nih.gov/36835247/

“In conclusion, cannabinoid extracts from high-CBD strains exhibit differential antitumor effects in human neuroblastoma cells by interfering with mitochondrial respiration and increasing ROS production, lipid peroxidation, and cell apoptosis in such a way that appears to correlate with THC content. However, the contributions of other compounds cannot be excluded. This action of the Cannabis sativa plant extracts used in our study was not only mediated by the cannabinoid receptor’s activity, but also by its effect on the mETC complexes, among others, which promote oxidative stress. Moreover, the use of plant extracts has demonstrated higher antitumoral effects than cannabinoids by themselves.”

https://www.mdpi.com/1422-0067/24/4/3837


Endocannabinoids are potential inhibitors of glioblastoma multiforme proliferation

Journal of Integrative Medicine

“Globally, it is evident that glioblastoma multiforme (GBM) is an aggressive malignant cancer with a high mortality rate and no effective treatment options. Glioblastoma is classified as the stage-four progression of a glioma tumor, and its diagnosis results in a shortened life expectancy. Treatment options for GBM include chemotherapy, immunotherapy, surgical intervention, and conventional pharmacotherapy; however, at best, they extend the patient’s life by a maximum of 5 years. GBMs are considered incurable due to their high recurrence rate, despite various aggressive therapeutic approaches which can have many serious adverse effects.

Ceramides, classified as endocannabinoids, offer a promising novel therapeutic approach for GBM. Endocannabinoids may enhance the apoptosis of GBM cells but have no effect on normal healthy neural cells. Cannabinoids promote atypical protein kinase C, deactivate fatty acid amide hydrolase enzymes, and activate transient receptor potential vanilloid 1 (TRPV1) and TRPV2 to induce pro-apoptotic signaling pathways without increasing endogenous cannabinoids. In previous in vivo studies, endocannabinoids, chemically classified as amide formations of oleic and palmitic acids, have been shown to increase the pro-apoptotic activity of human cancer cells and inhibit cell migration and angiogenesis.

This review focuses on the biological synthesis and pharmacology of endogenous cannabinoids for the enhancement of cancer cell apoptosis, which have potential as a novel therapy for GBM.”

https://pubmed.ncbi.nlm.nih.gov/36805391/

“As discussed above, endocannabinoids could prove to be a viable alternative treatment for GBM.”

https://www.sciencedirect.com/science/article/abs/pii/S2095496423000055?via%3Dihub

Delving into The Death Signaling Pathway of Hemp Oil and Gamma Radiation in Solid Tumor Bearing Mice

New publication in Canadian Journal of Physiology and Pharmacology –  Institute of Molecular Biomedicine

“Many studies reported the diverse therapeutic potential of essential oils, including cancer prevention and treatment. Many mechanisms involved in these processes including antioxidant, antimutagenic and antiproliferative effects, or by enhancing immune function and surveillance, inducing enzymes, and enhancing detoxification, and modulating multidrug resistance.

Hemp oil, obtained from Cannabis sativa L. seeds, is known for its nutritive, health-enhancing properties and bioactivity.

Adult female Swiss albino mice were injected with viable Ehrlich ascites carcinoma cells (2.5 x 106 cells/mouse) then administered with hemp oil (20 mg/kg) daily for 10 consecutive days pre and post exposure to 6Gy whole body gamma radiation. Hemp oil induced a significant increase in Beclin1, VMP1, LC3, cytochrome c and Bax. Otherwise, the oil showed a significant decrease in Bcl2 and P13k either alone or in combination with ɤ-radiation.

Finally this study revealed the role of hemp oil in inducing two cell death types ;autophagy and apoptosis as it may be applied as an adjuvant in cancer treatment.”

https://pubmed.ncbi.nlm.nih.gov/36812473/

https://cdnsciencepub.com/doi/10.1139/cjpp-2022-0319

A novel mechanism of cannabidiol in suppressing ovarian cancer through LAIR-1 mediated mitochondrial dysfunction and apoptosis

“Cannabidiol (CBD) is a nonpsychoactive cannabinoid compound. It has been shown that CBD can inhibit the proliferation of ovarian cancer cells, but the underlying specific mechanism is unclear.

We previously presented the first evidence for the expression of leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1), a member of the immunosuppressive receptor family, in ovarian cancer cells. In the present study, we investigated the mechanism by which CBD inhibits the growth of SKOV3 and CAOV3 ovarian cancer cells, and we sought to understand the concurrent role of LAIR-1.

In addition to inducing ovarian cancer cell cycle arrest and promoting cell apoptosis, CBD treatment significantly affected the expression of LAIR-1 and inhibited the PI3K/AKT/mTOR signaling axis and mitochondrial respiration in ovarian cancer cells. These changes were accompanied by an increase in ROS, loss of mitochondrial membrane potential, and suppression of mitochondrial respiration and aerobic glycolysis, thereby inducing abnormal or disturbed metabolism and reducing ATP production. A combined treatment with N-acetyl-l-cysteine and CBD indicated that a reduction in ROS production would restore PI3K/AKT/mTOR pathway signaling and ovarian cancer cell proliferation. We subsequently confirmed that the inhibitory effect of CBD on the PI3K/AKT/mTOR signal axis and mitochondrial bioenergy metabolism was attenuated by knockdown of LAIR-1. Our animal studies further support the in vivo anti-tumor activity of CBD and suggest its mechanism of action.

In summary, the present findings confirm that CBD inhibits ovarian cancer cell growth by disrupting the LAIR-1-mediated interference with mitochondrial bioenergy metabolism and the PI3K/AKT/mTOR pathway. These results provide a new experimental basis for research into ovarian cancer treatment based on targeting LAIR-1 with CBD.”

https://pubmed.ncbi.nlm.nih.gov/36810933/

https://onlinelibrary.wiley.com/doi/10.1002/tox.23752

Phytoradiotherapy to enhance cancer treatment outcomes with cannabidiol, bitter melon juice, and plant hemoglobin

Frontiers - Crunchbase Company Profile & Funding

“Despite technological advances in radiation therapy for cancer treatment, many patient populations still experience mediocre survival percentages, local control, and quality of life. Additionally, much of the world lacks access to expensive, modern treatment options. The need for innovative, cost-effective solutions that can improve patient treatment outcomes is essential.

Phytomedicines have been shown to induce apoptotic tumor cell death, diminish tumor progression, reduce cancer incidence, alleviate harmful hypoxic conditions, and more. While an ample amount of research is available that characterizes many phytomedicines as having anti-cancer properties that increase tumor cell killing/control and mitigate the harmful side effects of radiation damage, little work has been done to investigate the synergistic effect of phytoradiotherapy: combining radiation treatment with phytomedicines.

In this study, a protocol for testing the radiosensitizing effects of phytomedicines was validated and used to investigate the well-known plant based medicine cannabidiol (CBD) and the lesser-known medicinal fruit Bitter Melon. Additionally, based on its high concentration of plant hemoglobin which has been shown to abate hypoxia, the African-indigenous Justicia plant was tested in pancreatic adenocarcinoma mouse models.

The studies reveal that these phytomedicines can effectively enhance tumor cell killing, minimize tumor growth, and prolong mice survival. There is certainly the need for additional research in this regard, however, phytoradiotherapy: the use of phytomedicines to enhance radiation therapy treatment outcomes, continues to show potential as a promising, innovative way to improve cancer care.”

https://pubmed.ncbi.nlm.nih.gov/36776362/

“Results showing that both CBD and BMJ are effective radiosensitizing phytomedicines demonstrate promise that the two plant-based medicines have a potential future in radiation therapy as treatment enhancing drugs at a much more affordable rate than their synthetic alternatives.”

https://www.frontiersin.org/articles/10.3389/fonc.2022.1085686/full