The Combination of Δ 9-Tetrahydrocannabinol and Cannabidiol Suppresses Mitochondrial Respiration of Human Glioblastoma Cells via Downregulation of Specific Respiratory Chain Proteins

cancers-logo

“Phytocannabinoids represent a promising approach in glioblastoma therapy.

Previous work has shown that a combined treatment of glioblastoma cells with submaximal effective concentrations of psychoactive Δ9-tetrahydrocannabinol (THC) and non-psychoactive cannabidiol (CBD) greatly increases cell death.

In the present work, the glioblastoma cell lines U251MG and U138MG were used to investigate whether the combination of THC and CBD in a 1:1 ratio is associated with a disruption of cellular energy metabolism, and whether this is caused by affecting mitochondrial respiration.

Here, the combined administration of THC and CBD (2.5 µM each) led to an inhibition of oxygen consumption rate and energy metabolism. These effects were accompanied by morphological changes to the mitochondria, a release of mitochondrial cytochrome c into the cytosol and a marked reduction in subunits of electron transport chain complexes I (NDUFA9, NDUFB8) and IV (COX2, COX4). Experiments with receptor antagonists and inhibitors showed that the degradation of NDUFA9 occurred independently of the activation of the cannabinoid receptors CB1, CB2 and TRPV1 and of usual degradation processes mediated via autophagy or the proteasomal system.

In summary, the results describe a previously unknown mitochondria-targeting mechanism behind the toxic effect of THC and CBD on glioblastoma cells that should be considered in future cancer therapy, especially in combination strategies with other chemotherapeutics.”

https://pubmed.ncbi.nlm.nih.gov/35804909/

“Cannabidiol (CBD) is a phytocannabinoid from Cannabis sativa L. that exhibits no psychoactivity and, like the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC), shows anticancer effects in preclinical cell and animal models. Previous studies have indicated a stronger cancer-targeting effect when THC and CBD are combined. Here, we investigated how the combination of THC and CBD in a 1:1 ratio affects glioblastoma cell survival. The compounds were found to synergistically enhance cell death, which was attributed to mitochondrial damage and disruption of energy metabolism. A detailed look at the mitochondrial electron transfer chain showed that THC/CBD selectively decreased certain subunits of complexes I and IV. These data highlight the fundamental changes in cellular energy metabolism when cancer cells are exposed to a mixture of cannabinoids and underscore the potential of combining cannabinoids in cancer treatment.”

https://www.mdpi.com/2072-6694/14/13/3129


Therapeutic Potential of Cannabinoids on Tumor Microenvironment: A Molecular Switch in Neoplasia Transformation

“The efficacy of chemotherapy depends on the tumor microenvironment. This microenvironment consists of a complex cellular network that can exert both stimulatory and inhibitory effects on tumor genesis.

Given the increasing interest in the effectiveness of cannabis, cannabinoids have gained much attention as a potential chemotherapy drug. Cannabinoids are a group of marker compounds found in Cannabis sativa L., more commonly known as marijuana, a psychoactive drug used since ancient times for pain management.

Although the anticancer potential of C. sativa, has been recognized previously, increased attention was generated after discovering the endocannabinoid system and the successful production of cannabinoid receptors.

In vitro and in vivo studies on various tumor models have shown therapeutic efficiency by modifying the tumor microenvironment.

This review summarizes the key literature surrounding the role of cannabinoids in the tumor microenvironment and their future promise in cancer treatment.”

https://pubmed.ncbi.nlm.nih.gov/35796303/

“Cannabis sativa L. is a natural source of valuable compounds that comprise cannabinoid agonists and antagonists, which have recently been scanned for future applications as anti-tumor drugs. Cannabinoids have mostly been used as a part of palliative care to alleviate pain, relieve nausea, and stimulate appetite in cancer patients. Although not yet approved for treating tumor progression, cannabinoid agonist/antagonists on the tumor microenvironment have been studied for the last 43 years. Research on cannabinoids and their potential therapeutic function has been ongoing since 1971. Numerous in vitro and in vivo studies have demonstrated the anti-cancer effects of cannabinoids in various cancer types.”

https://journals.sagepub.com/doi/10.1177/15347354221096766


Cannabis: Chemistry, extraction and therapeutic applications

Chemosphere

“Cannabis, a genus of perennial indigenous plants is well known for its recreational and medicinal activities. Cannabis and its derivatives have potential therapeutic activities to treat epilepsy, anxiety, depression, tumors, cancer, Alzheimer’s disease, Parkinson’s disease, to name a few.

This article reviews some recent literature on the bioactive constituents of Cannabis, commonly known as phytocannabinoids, their interactions with the different cannabinoids and non-cannabinoid receptors as well as the significances of these interactions in treating various diseases and syndromes.

The biochemistry of some notable cannabinoids such as tetrahydrocannabinol, cannabidiol, cannabinol, cannabigerol, cannabichromene and their carboxylic acid derivatives is explained in the context of therapeutic activities.

The medicinal features of Cannabis-derived terpenes are elucidated for treating several neuro and non-neuro disorders. Different extraction techniques to recover cannabinoids are systematically discussed. Besides the medicinal activities, the traditional and recreational utilities of Cannabis and its derivatives are presented. A brief note on the legalization of Cannabis-derived products is provided.

This review provides comprehensive knowledge about the medicinal properties, recreational usage, extraction techniques, legalization and some prospects of cannabinoids and terpenes extracted from Cannabis.”

https://pubmed.ncbi.nlm.nih.gov/34838836/

“Cannabinoids have therapeutic effects against various health disorders.•

Medicinal effects are due to the interactions of cannabinoids with bio-receptors.•

Cannabinoids can be extracted from Cannabis plant products by eco-friendly extraction methods.”

https://www.sciencedirect.com/science/article/abs/pii/S0045653521034846?via%3Dihub

Image 1


Receptor-targeted nanoparticles modulate cannabinoid anticancer activity through delayed cell internalization

Scientific Reports

“Δ9-tetrahydrocannabinol (Δ9-THC) is known for its antitumor activity and palliative effects.

However, its unfavorable physicochemical and biopharmaceutical properties, including low bioavailability, psychotropic side effects and resistance mechanisms associated to dosing make mandatory the development of successful drug delivery systems.

In this work, transferring (Tf) surface-modified Δ9-THC-loaded poly(lactide-co-glycolic) nanoparticles (Tf-THC-PLGA NPs) were proposed and evaluated as novel THC-based anticancer therapy. Furthermore, in order to assess the interaction of both the nanocarrier and the loaded drug with cancer cells, a double-fluorescent strategy was applied, including the chemical conjugation of a dye to the nanoparticle polymer along with the encapsulation of either a lipophilic or a hydrophilic dye.

Tf-THC PLGA NPs exerted a cell viability decreased down to 17% vs. 88% of plain nanoparticles, while their internalization was significantly slower than plain nanoparticles. Uptake studies in the presence of inhibitors indicated that the nanoparticles were internalized through cholesterol-associated and clathrin-mediated mechanisms.

Overall, Tf-modification of PLGA NPs showed to be a highly promising approach for Δ9-THC-based antitumor therapies, potentially maximizing the amount of drug released in a sustained manner at the surface of cells bearing cannabinoid receptors.”

https://pubmed.ncbi.nlm.nih.gov/35079042/

“The potential therapeutic applications of marijuana, firstly reported in 1997 by the National Institutes of Health (NIH, USA), are attributed to a great extent to its main component, Δ9-tetrahydrocannabinol (Δ9-THC)1. This cannabinoid continues to attract special attention in oncology due to its palliative effects and antitumor activity; Δ9-THC has been reported to inhibit tumor angiogenesis and cell growth in malignant tissues, leading to cell death.”

“Δ9-THC has been reported to inhibit tumor angiogenesis and cell growth in malignant tissues.”

“Overall, Tf-modification of PLGA NPs seemed a highly promising approach for Δ9-THC-based antitumor therapies, aiming at a prolonged action of the carrier at the target cell surface. Moreover, the translation of this strategy to the delivery of alternative active pharmaceutical ingredients with pharmacological targets on the surface of cells could lead to advances in related therapies.”

https://www.nature.com/articles/s41598-022-05301-z

In Vitro Effect of Δ9-Tetrahydrocannabinol and Cannabidiol on Cancer-Associated Fibroblasts Isolated from Lung Cancer

ijms-logo

“There is evidence that demonstrates the effect of cannabinoid agonists inhibiting relevant aspects in lung cancer, such as proliferation or epithelial-to-mesenchymal transition (EMT).

Most of these studies are based on evidence observed in in vitro models developed on cancer cell lines. These studies do not consider the complexity of the tumor microenvironment (TME). One of the main components of the TME is cancer-associated fibroblasts (CAFs), cells that are relevant in the control of proliferation and metastasis in lung cancer.

In this work, we evaluated the direct effects of two cannabinoid agonists, tetrahydrocannabinol (THC) and cannabidiol (CBD), used alone or in combination, on CAFs and non-tumor normal fibroblasts (NFs) isolated from adenocarcinoma or from healthy lung tissue from the same patients.

We observed that these compounds decrease cell density in vitro and inhibit the increase in the relative expression of type 1 collagen (COL1A1) and fibroblast-specific protein 1 (FSP1) induced by transforming growth factor beta (TGFβ). On the other hand, we studied whether THC and CBD could modulate the interactions between CAFs or NFs and cancer cells. We conditioned the culture medium with stromal cells treated or not with THC and/or CBD and cultured A549 cells with them.

We found that culture media conditioned with CAFs or NFs increased cell density, induced morphological changes consistent with EMT, inhibited cadherin-1 (CDH1) gene expression, and induced an increase in the relative expression of cadherin-2 (CDH2) and vimentin (VIM) genes in A549 cells. These changes were inhibited or decreased by THC and CBD administered alone or in combination. In another series of experiments, we conditioned culture media with A549 cells treated or not with THC and/or CBD, in the presence or absence of TGFβ. We observed that culture media conditioned with A549 in the presence of TGFβ induced an increase in the expression of COL1A1 and VIM, both in CAFs and in non-tumor NFs. Both THC and CBD ameliorated these effects.

In summary, the results presented here reinforce the usefulness of cannabinoid agonists for the treatment of some relevant aspects of lung cancer pathology, and demonstrate in a novel way their possible effects on CAFs as a result of their relationship with cancer cells. Likewise, the results reinforce the usefulness of the combined use of THC and CBD, which has important advantages in relation to the possibility of using lower doses, thus minimizing the psychoactive effects of THC.”

https://pubmed.ncbi.nlm.nih.gov/35743206/

https://www.mdpi.com/1422-0067/23/12/6766


Cannabidiol Interacts Antagonistically with Cisplatin and Additively with Mitoxantrone in Various Melanoma Cell Lines-An Isobolographic Analysis

ijms-logo

“The medical application of cannabidiol (CBD) has been gathering increasing attention in recent years. This non-psychotropic cannabis-derived compound possesses antiepileptic, antipsychotic, anti-inflammatory and anxiolytic properties. Recent studies report that it also exerts antineoplastic effects in multiple types of cancers, including melanoma.

In this in vitro study we tried to reveal the anticancer properties of CBD in malignant melanoma cell lines (SK-MEL 28, A375, FM55P and FM55M2) administered alone, as well as in combination with mitoxantrone (MTX) or cisplatin (CDDP).

The effects of CBD on the viability of melanoma cells were measured by the MTT assay; cytotoxicity was determined in the LDH test and proliferation in the BrdU test. Moreover, the safety of CBD was tested in human keratinocytes (HaCaT) in LDH and MTT tests.

Results indicate that CBD reduces the viability and proliferation of melanoma-malignant cells and exerts additive interactions with MTX. Unfortunately, CBD produced antagonistic interaction when combined with CDDP. CBD does not cause significant cytotoxicity in HaCaT cell line.

In conclusion, CBD may be considered as a part of melanoma multi-drug therapy when combined with MTX. A special attention should be paid to the combination of CBD with CDDP due to the antagonistic interaction observed in the studied malignant melanoma cell lines.”

https://pubmed.ncbi.nlm.nih.gov/35743195/

https://www.mdpi.com/1422-0067/23/12/6752

Mechanisms of Cannabidiol (CBD) in Cancer Treatment: A Review

biology-logo


“Cannabis sativa L. (Cannabis) and its bioactive compounds, including cannabinoids and non-cannabinoids, have been extensively studied for their biological effects in recent decades. Cannabidiol (CBD), a major non-intoxicating cannabinoid in Cannabis, has emerged as a promising intervention for cancer research.

The purpose of this review is to provide insights into the relationship between CBD and cancer based on recent research findings.

The anticancer effects of CBD are mainly mediated via its interaction with the endocannabinoid system, resulting in the alleviation of pain and the promotion of immune regulation. Published reviews have focused on the applications of CBD in cancer pain management and the possible toxicological effects of its excessive consumption.

In this review, we aim to summarize the mechanisms of action underlying the anticancer activities of CBD against several common cancers. Studies on the efficacy and mechanisms of CBD on cancer prevention and intervention in experimental models (i.e., cell culture- and animal-based assays) and human clinical studies are included in this review.”

https://pubmed.ncbi.nlm.nih.gov/35741337/

“Emerging evidence suggests positive outcomes from the use of CBD as a cancer treatment. CBD can relieve cancer pain and ease the side effects of chemotherapy; however, there is less research about the mechanism of CBD’s anticancer effects. In this article, recent studies on the efficacy and mechanisms of CBD’s anticancer effects in cell- and animal-based models and human clinical studies are reviewed.”

https://www.mdpi.com/2079-7737/11/6/817


Cannabidiol and Cannabigerol Inhibit Cholangiocarcinoma Growth In Vitro via Divergent Cell Death Pathways

biomolecules-logo

“Cholangiocarcinoma (CCA) is a rare and highly lethal disease with few effective treatment options.

Cannabinoids, cannabidiol (CBD) and cannabigerol (CBG) are non-psychedelic components extracted from cannabis. These non-psychoactive compounds have shown anti-proliferative potential in other tumor models; however, the efficacy of CBD and CBG in CCA is unknown. Furthermore, two cell death pathways are implicated with CBD resulting in autophagic degeneration and CBG in apoptosis. HuCC-T1 cells, Mz-ChA-1 cells (CCA cell lines) and H69 cells (immortalized cholangiocytes), were treated with CBD and CBG for 24 to 48 h.

The influence of these cannabinoids on proliferation was assessed via MTT assay. Apoptosis and cell cycle were evaluated via Annexin-V apoptosis assay and propidium iodide, respectively. The expression of proliferation biomarker Ki-67, apoptosis biomarker BAX, and autophagic flux biomarkers LC3b and LAMP1 were evaluated via immunofluorescence. Cell migration and invasion were evaluated via wound healing assay and trans-well migration invasion assays, respectively. The colony formation was evaluated via colony formation assay. In addition, the expression of autophagy gene LC3b and apoptosis genes BAX, Bcl-2, and cleaved caspase-3 were evaluated via Western blot.

CBD and CBG are non-selective anti-proliferative agents yielding similar growth curves in CCA; both cannabinoids are effective, yet CBG is more active at lower doses. Low doses of CBD and CBG enhanced immortalized cholangiocyte activity. The reduction in proliferation begins immediately and occurs maximally within 24 h of treatment. Moreover, a significant increase in the late-stage apoptosis and a reduction in the number of cells in S stage of the cell cycle indicates both CBD and CBG treatment could promote apoptosis and inhibit mitosis in CCA cells. The fluorescent expression of BAX and LC3b was significantly enhanced with CBD treatment when compared to control. LAMP1 and LC3b colocalization could also be observed with CBD and CBG treatment indicating changes in autophagic flux.

A significant inhibition of migration, invasion and colony formation ability was shown in both CBD and CBG treatment in CCA. Western blot showed an overall decrease in the ratio of anti-apoptotic protein Bcl-2 with respect to pro-apoptotic protein BAX with CBG treatment. Furthermore, CBD treatment enhanced the expression of Type II cell death (autophagic degeneration) protein LC3b, which was reduced in CBG-treated CCA cells. Meanwhile, CBG treatment upregulated Type I cell death (programmed apoptosis) protein cleaved caspase-3.

CBD and CBG are effective anti-cancer agents against CCA, capable of inhibiting the classic hallmarks of cancer, with a divergent mechanism of action (Type II or Type I respectively) in inducing these effects.”

https://pubmed.ncbi.nlm.nih.gov/35740979/

https://www.mdpi.com/2218-273X/12/6/854


Extracellular vesicles of cannabis with high CBD content induce anticancer signaling in human hepatocellular carcinoma

Biomedicine & Pharmacotherapy


“Plant-derived extracellular vesicles (EVs) have been the topic of interest in recent years due to their proven therapeutic properties. Intact or manipulated plant EVs have shown antioxidant, anti-inflammatory, and anti-cancerous activities as a result of containing bioactive metabolites and other endogenous molecules. Less is known about the EV efficacy with high levels of bioactive secondary metabolites derived from medicinal or non-edible plants.

Numerous data suggest the functionality of Cannabis sativa extract and its phytocannabinoids in cancer treatment. Here, two chemotypes of cannabis with different levels of D-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) were selected. EVs were isolated from each chemotype via differential ultracentrifugation. HPLC analysis was illustrative of the absence of THC in EVs derived from both plants. Therefore, two types of EVs were classified according to their CBD content into high- (H.C-EVs) and low-CBD EVs (L.C-EVs). Electron microscopy and DLS showed both cannabis-derived EVs (CDEVs) can be considered as exosome-like nanovesicles. Cytotoxicity assay showed that H.C-EVs strongly decreased the viability of two hepatocellular carcinoma (HCC) cell lines, HepG2 and Huh-7, in a dose and time-dependent manner compared with L.C-EVs. H.C-EVs had no significant effect on HUVECs normal cell growth. The finding showed that the H.C-EVs arrested the G0/G1 phase in the cell cycle and significantly induced cell death by activating mitochondrial-dependent apoptosis signaling pathways in both HCC cell lines.

Altogether, the current study highlights that CDEVs can be an ideal natural vehicle for bioactive phytocannabinoids and a promising strategy in cancer management.”

https://pubmed.ncbi.nlm.nih.gov/35667235/

“Altogether, our findings suggest that the EVs derived from cannabis can act as natural nano-carriers containing bioactive phytochemicals and be used in cancer research. The possible use of these biomaterials in combination with chemotherapy drugs can open a new gateway for cancer treatment.”

https://www.sciencedirect.com/science/article/pii/S0753332222005984?via%3Dihub

Fig. 1

Protective Effects of Cannabidiol on Chemotherapy-Induced Oral Mucositis via the Nrf2/Keap1/ARE Signaling Pathways

Archive of "Oxidative Medicine and Cellular Longevity". - PMC

“Oral mucositis (OM) is a common complication during chemotherapy characterized by ulceration, mucosa atrophy, and necrosis, which seriously interferes with nutritional intake and oncotherapy procedures among patients. However, the efficacy of current treatments for OM remains limited.

Cannabidiol (CBD) is a natural cannabinoid with multiple biological activities, including antioxidant and anti-inflammatory potential. In this study, we aimed to investigate the chemopreventive effects and mechanisms of CBD in protecting C57BL/6N mice and human oral keratinocytes (HOK) from 5-fluorouracil- (5-FU-) induced OM.

Here, we found that CBD alleviated the severity of 5-FU-induced OM in mice, including improved survival, decreased body weight loss, reduced ulcer sizes, and improved clinical scores. Histologically, CBD restored epithelial thickness and normal structure in tongue tissues. Meanwhile, CBD attenuated reactive oxygen species (ROS) overproduction and improved the antioxidant response, suppressed the inflammatory response, promoted the proliferation of epithelial cells, and inhibited 5-FU-induced apoptosis. In vitro, consistent outcomes showed that CBD suppressed cellular ROS levels, enhanced antioxidant ability, reduced inflammatory response, promoted proliferation, and inhibited apoptosis in 5-FU-treated HOK cells. In particular, CBD upregulated the expression levels of antioxidant enzymes, heme oxygenase-1 (HO-1) and NAD(P)H quinine oxidoreductase 1 (NQO1), by increasing the expression and nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and decreasing Kelch-like ECH-associated protein 1 (Keap1). Notably, the Nrf2 inhibitor ML385 reversed the protective effect of CBD. Nrf2-siRNA transfection also significantly blunted the antioxidant effect of CBD in in vitro OM model.

Collectively, our findings suggested that CBD protected against 5-FU-induced OM injury at least partially via the Nrf2/Keap1/ARE signaling pathways, highlighting the therapeutic prospects of CBD as a novel strategy for chemotherapy-induced OM.”

https://pubmed.ncbi.nlm.nih.gov/35669853/

“CBD alleviates chemotherapy-induced OM and protects against the toxicity of 5-FU by improving oxidative stress defense, downregulating mucosal inflammation, promoting cell proliferation, and inhibiting 5-FU-induced apoptosis both in mice and in HOK. Moreover, CBD-activated Nrf2/Keap1/ARE signaling pathways might be the underlying mechanism for OM recovery.”

https://www.hindawi.com/journals/omcl/2022/4619760/