“Cannabis plants have been used in medicine since ancient times. They are well known for their anti-diabetic, anti-inflammatory, neuroprotective, anti-cancer, anti-oxidative, anti-microbial, anti-viral, and anti-fungal activities. A growing body of evidence indicates that targeting the endocannabinoid system and various other receptors with cannabinoid compounds holds great promise for addressing multiple medical conditions. There are two distinct avenues in the development of cannabinoid-based drugs. The first involves creating treatments directly based on the components of the cannabis plant. The second involves a singular molecule strategy, in which specific phytocannabinoids or newly discovered cannabinoids with therapeutic promise are pinpointed and synthesized for future pharmaceutical development and validation. Although the therapeutic potential of cannabis is enormous, few cannabis-related approved drugs exist, and this avenue warrants further investigation. With this in mind, we review here the medicinal properties of cannabis, its phytochemicals, approved drugs of natural and synthetic origin, pitfalls on the way to the widespread clinical use of cannabis, and additional applications of cannabis-related products.”
Category Archives: Endocannabinoid System
Cancer-Cachexia-Induced Human Skeletal Muscle Myotube Degeneration Is Prevented via Cannabinoid Receptor 2 Agonism In Vitro
“Cachexia syndrome, leading to reduced skeletal muscle and fat mass, is highly prevalent in cancer patients, resulting in further negative implications for these patients. To date, there is no approved therapy for cachexia syndrome. The objective of this study was to establish an in vitro model of cancer cachexia in mature human skeletal muscle myotubes, with the intention of exploiting the cell model to assess potential cachexia therapeutics, specifically cannabinoid related drugs. Having cultured and differentiated primary human muscle myoblasts to mature myotubes, we successfully established two cancer cachexia models using conditioned media (CM) from human colon adenocarcinoma (SW480) and from non-small-cell lung carcinoma (H1299) cultured cells. The cancer-CM-induced extensive myotube degeneration, demonstrated by a significant reduction in mature myotube diameter, which progressed over the period studied. Myotube degeneration is a characteristic feature of cancer cachexia and was used in this study as an index of cachexia. Expression of cannabinoid 1 and 2 receptors (CB1R and CB2R) was confirmed in the mature human skeletal muscle myotubes. Subsequently, the effect of cannabinoid compounds on this myotube degeneration were assessed.
Tetrahydrocannabinol (THC), a partial CB1R/CB2R agonist, and JWH133, a selective CB2R agonist, proved efficacious in protecting mature human myotubes from the deleterious effects of both (SW480 and H1299) cancer cachexia conditions.
ART27.13, a full, peripherally selective CB1R/CB2R agonist, currently being trialled in cancer cachexia (IRAS ID 278450, REC 20/NE/0198), was also significantly protective against myotube degeneration in both (SW480 and H1299) cancer cachexia conditions. Furthermore, the addition of the CB2R antagonist AM630, but not the CB1R antagonist Rimonabant, abolished the protective effect of ART27.13. In short, we have established a convenient and robust in vitro model of cancer-induced human skeletal muscle cachexia. The data obtained using the model demonstrate the therapeutic potential of ART27.13 in cancer-induced cachexia prevention and provides evidence indicating that this effect is via CB2R, and not CB1R.”
https://pubmed.ncbi.nlm.nih.gov/38004445/
“Several cannabinoid drugs have emerged as potential therapeutics for various conditions.”
Cannabinoids and Their Receptors in Skin Diseases
“The therapeutic application of cannabinoids has gained traction in recent years. Cannabinoids interact with the human endocannabinoid system in the skin. A large body of research indicates that cannabinoids could hold promise for the treatment of eczema, psoriasis, acne, pruritus, hair disorders, and skin cancer. However, most of the available data are at the preclinical stage. Comprehensive, large-scale, randomized, controlled clinical trials have not yet been fully conducted. In this article, we describe new findings in cannabinoid research and point out promising future research areas.”
https://pubmed.ncbi.nlm.nih.gov/38003712/
“In recent years, some components of cannabis, also known as marijuana, have been studied. Cannabis has been used for various purposes throughout history, including recreational, medicinal, and industrial uses. In recent years, cannabinoid components are emerging as therapeutic alternatives for patients with a variety of illnesses and conditions. In particular, their anti-inflammatory properties have piqued the interest of dermatologists [1]. Given the growing number of pre-clinical and clinical studies exploring the potential of cannabinoids to treat dermatologic conditions, we here summarize reports of cannabinoid use in dermatologic therapy.”
Cannabis and Endometriosis: The Roles of the Gut Microbiota and the Endocannabinoid System
“Endometriosis, a chronic condition affecting around 10-14% of women, is challenging to manage, due to its complex pathogenesis and limited treatment options. Research has suggested a potential role of the gut microbiota and the endocannabinoid system in the development and progression of endometriosis. This narrative review aims to explore the role of, and any potential interactions between, the endocannabinoid system (ECS) and the gut microbiota in endometriosis. This review found that both the ECS and microbiota influence endometriosis, with the former regulating inflammation and pain perception and the latter influencing immune responses and hormonal balance. There is evidence that a dysregulation of the endocannabinoid system and the gut microbiota influence endometriosis symptoms and progression via changes in CB1 receptor expression and increased circulating levels of endocannabinoids. Microbial imbalances in the gut, such as increases in Prevotella, have been directly correlated to increased bloating, a common endometriosis symptom, while increases in E. coli have supported the bacterial contamination hypothesis as a potential pathway for endometriosis pathogenesis. These microbial imbalances have been correlated with increases in inflammatory markers such as TNF-α and IL-6, both often raised in those with endometriosis. Protective effects of the ECS on the gut were observed by increases in endocannabinoids, including 2-AG, resulting in decreased inflammation and improved gut permeability. Given these findings, both the ECS and the gut microbiota may be targets for therapeutic interventions for endometriosis; however, clinical studies are required to determine effectiveness.”
An Emerging Strategy for Neuroinflammation Treatment: Combined Cannabidiol and Angiotensin Receptor Blockers Treatments Effectively Inhibit Glial Nitric Oxide Release
“Cannabidiol (CBD), the major non-psychoactive phytocannabinoid found in cannabis, has anti-neuroinflammatory properties.
Despite the increasing use of CBD, little is known about its effect in combination with other substances. Combination therapy has been gaining attention recently, aiming to produce more efficient effects. Angiotensin II activates the angiotensin 1 receptor and regulates neuroinflammation and cognition. Angiotensin receptor 1 blockers (ARBs) were shown to be neuroprotective and prevent cognitive decline. The present study aimed to elucidate the combined role of CBD and ARBs in the modulation of lipopolysaccharide (LPS)-induced glial inflammation. While LPS significantly enhanced nitric oxide synthesis vs. the control, telmisartan and CBD, when administered alone, attenuated this effect by 60% and 36%, respectively. Exposure of LPS-stimulated cells to both compounds resulted in the 95% inhibition of glial nitric oxide release (additive effect). A synergistic inhibitory effect on nitric oxide release was observed when cells were co-treated with losartan (5 μM) and CBD (5 μM) (by 80%) compared to exposure to each compound alone (by 22% and 26%, respectively). Telmisartan and CBD given alone increased TNFα levels by 60% and 40%, respectively. CBD and telmisartan, when given together, attenuated the LPS-induced increase in TNFα levels without statistical significance. LPS-induced IL-17 release was attenuated by CBD with or without telmisartan (by 75%) or telmisartan alone (by 60%). LPS-induced Interferon-γ release was attenuated by 80% when telmisartan was administered in the absence or presence of CBD. Anti-inflammatory effects were recorded when CBD was combined with the known anti-inflammatory agent dimethyl fumarate (DMF)/monomethyl fumarate (MMF). A synergistic inhibitory effect of CBD and MMF on glial release of nitric oxide (by 77%) was observed compared to cells exposed to MMF (by 35%) or CBD (by 12%) alone. Overall, this study highlights the potential of new combinations of CBD (5 μM) with losartan (5 μM) or MMF (1 μM) to synergistically attenuate glial NO synthesis. Additive effects on NO production were observed when telmisartan (5 μM) and CBD (5 μM) were administered together to glial cells.”
Cannabidiol Anticonvulsant Effects Against Lithium-Pilocarpine-Induced Status Epilepticus in Male Rats Are Mediated by Neuroinflammation Modulation and Cannabinoids 1 (CB1), But Not CB2 and GABAA Receptors
“Background: Status epilepticus (SE) is a series of seizures that can lead to serious neurological damages. Cannabidiol (CBD) is extracted from the cannabis plant, which has been approved as an antiseizure medication. This study aimed to determine the efficacy of various doses of CBD on lithium-pilocarpine-induced SE in rats and possible involvement of multiple pharmacological pathways. We hypothesized that cannabinoid receptors type 1 (CB1) and CB2, as well as GABAA receptors, might have important roles in the anticonvulsant effects of CBD against SE by its anti-inflammatory effects.
Methods: SE was induced by intraperitoneal (i.p.) injection of lithium (127 mg/kg, i.p.) and pilocarpine (60 mg/kg, i.p., 20 h after lithium). Forty-two male rats were divided into seven groups (including control and sham groups), and the treated groups received different doses of CBD (1, 3, 5, 10, and 25 mg/kg, i.p.). SE score was recorded over the next 2 h following pilocarpine injection. Then, we measured the levels of pro-inflammatory cytokines, including interleukin (IL)-lβ and tumor necrosis factor (TNF)-α, using ELISA kits. Also we analyzed the expression of CB1, CB2, and GABAA receptors using the Western blot technique.
Results: CBD at 5 mg/kg significantly reduced Racine’s scale and duration of seizures, and increased the onset time of seizure. Moreover, CBD 5 mg/kg caused significant reductions in the elevated levels of IL-lβ and TNF-α, as well as a significant increase in the decreased level of CB1 receptor expression compared to the control group. In other word, CBD reverted the effects of SE in terms of neuroinflammation and CB1 receptor. Based on the obtained results, CBD was not able to restore the declined levels of CB2 or GABAA receptors.
Conclusion: Our study found anticonvulsant effects of CBD on the SE rat model induced by lithium-pilocarpine with probable involvement of CB1 receptors and anti-inflammatory effects by reducing IL-1β and TNF-α markers independent of CB2 and GABAA receptors.”
Anxiety Modulation by Cannabinoids-The Role of Stress Responses and Coping
“Endocannabinoids were implicated in a variety of pathological conditions including anxiety and are considered promising new targets for anxiolytic drug development. The optimism concerning the potentials of this system for anxiolysis is probably justified. However, the complexity of the mechanisms affected by endocannabinoids, and discrepant findings obtained with various experimental approaches makes the interpretation of research results difficult. Here, we review the anxiety-related effects of the three main interventions used to study the endocannabinoid system: pharmacological agents active at endocannabinoid-binding sites present on both the cell membrane and in the cytoplasm, genetic manipulations targeting cannabinoid receptors, and function-enhancers represented by inhibitors of endocannabinoid degradation and transport. Binding-site ligands provide inconsistent findings probably because they activate a multitude of mechanisms concomitantly. More robust findings were obtained with genetic manipulations and particularly with function enhancers, which heighten ongoing endocannabinoid activation rather than affecting all mechanisms indiscriminately. The enhancement of ongoing activity appears to ameliorate stress-induced anxiety without consistent effects on anxiety in general. Limited evidence suggests that this effect is achieved by promoting active coping styles in critical situations. These findings suggest that the functional enhancement of endocannabinoid signaling is a promising drug development target for stress-related anxiety disorders.”
https://pubmed.ncbi.nlm.nih.gov/37958761/
“Three hypotheses have been put forward so far on the role of endocannabinoids in emotional and behavioral control.
- The endocannabinoid system controls behavior by its interactions with the stress system (HPA-axis) and ensures normal functioning by eliminating excessive stress responses at all three levels: the hormonal, neural, and behavioral.
- The endocannabinoid system contributes to the integration of perception and execution, by allowing this adaptation to the environment. It buffers maladaptive responses and protects against psychiatric symptoms.
- The endocannabinoid system promotes an active coping with challenges, which confers the organism advantages in critical situations. This may be the common denominator of its anxiolytic- and antidepression-like effects.
These three hypotheses appear complementary rather than contradictory. All three suggest that the endocannabinoid system is a valid target for the treatment of psychiatric conditions associated with dysregulated affect. The task is to find the agent that achieves the goal with minimal risks.”
https://www.mdpi.com/1422-0067/24/21/15777
Dysregulation of the endogenous cannabinoid system following opioid exposure
“Rates of opioid-related deaths and overdoses in the United States are at record-high levels. Thus, novel neurobiological targets for the treatment of OUD are greatly needed. Given the close interaction between the endogenous opioid system and the endocannabinoid system (ECS), targeting the ECS may have therapeutic potential in OUD.
The various components of the ECS, including cannabinoid receptors, their lipid-derived endogenous ligands (endocannabinoids [eCBs]), and the related enzymes, present potential targets for developing new medications in OUD treatment.
The purpose of this paper is to review the clinical and preclinical literature on the dysregulation of the ECS after exposure to opioids. We review the evidence of ECS dysregulation across various study types, exposure protocols, and measurement protocols and summarize the evidence for dysregulation of ECS components at specific brain regions.
Preclinical research has shown that opioids disrupt various ECS components that are region-specific. However, the results in the literature are highly heterogenous and sometimes contradictory, possibly due to variety of different methods used. Further research is needed before a confident conclusion could be made on how exposure to opioids can affect ECS components in various brain regions.”
https://pubmed.ncbi.nlm.nih.gov/37931479/
https://www.sciencedirect.com/science/article/abs/pii/S016517812300536X?via%3Dihub
Involvement of cannabinoid receptors and adenosine A2B receptor in enhanced migration of lung cancer A549 cells induced by γ-ray irradiation
“Residual cancer cells after radiation therapy may acquire malignant phenotypes such as enhanced motility and migration ability, and therefore it is important to identify targets for preventing radiation-induced malignancy in order to increase the effectiveness of radiotherapy. G-Protein-coupled receptors (GPCRs) such as adenosine A2B receptor and cannabinoid receptors (CB1, CB2 and GPR55) may be involved, as they are known to have roles in proliferation, invasion, migration and tumor growth. In this study, we investigated the involvement of A2B and cannabinoid receptors in γ-radiation-induced enhancement of cell migration and actin remodeling, as well as the involvement of cannabinoid receptors in cell migration enhancement via activation of A2B receptor in human lung cancer A549 cells. Antagonists or knockdown of A2B, CB1, CB2 or GPR55 receptor suppressed γ-radiation-induced cell migration and actin remodeling. Furthermore, BAY60-6583 (an A2B receptor-specific agonist) enhanced cell migration and actin remodeling in A549 cells, and this enhancement was suppressed by antagonists or knockdown of CB2 or GPR55, though not CB1 receptor. Our results indicate that A2B receptors and cannabinoid CB1, CB2 and GPR55 receptors all contribute to γ-radiation-induced acquisition of malignant phenotypes, and in particular that interactions of A2B receptor and cannabinoid CB2 and GPR55 receptors play a role in promoting cell migration and actin remodeling. A2B receptor-cannabinoid receptor pathways may be promising targets for blocking the appearance of malignant phenotypes during radiotherapy of lung cancer.”
https://pubmed.ncbi.nlm.nih.gov/37926527/
https://www.jstage.jst.go.jp/article/bpb/advpub/0/advpub_b23-00631/_article
Neuro-Gastro-Cannabinology: A Novel Paradigm for Regulating Mood and Digestive Health
“The maintenance of homeostasis in the gastrointestinal (GI) tract is ensured by the presence of the endocannabinoid system (ECS), which regulates important physiological activities, such as motility, permeability, fluid secretion, immunity, and visceral pain sensation. Beside its direct effects on the GI system, the ECS in the central nervous system indirectly regulates GI functions, such as food intake and energy balance. Mounting evidence suggests that the ECS may play an important role in modulating central neurotransmission which affects GI functioning. It has also been found that the interaction between the ECS and microbiota affects brain and gut activity in a bidirectional manner, and a number of studies demonstrate that there is a strong relationship between GI dysfunctions and mood disorders. Thus, microbiota can regulate the tone of the ECS. Conversely, changes in intestinal ECS tone may influence microbiota composition. In this mini-review, we propose the concept of neuro-gastro-cannabinology as a novel and alternative paradigm for studying and treating GI disorders that affect mood, as well as mood disorders that imbalance GI physiology. This concept suggests the use of prebiotics or probiotics for improving the tone of the ECS, as well as the use of phytocannabinoids or endocannabinoid-like molecules, such as palmitoylethanolamide, to restore the normal intestinal microbiota. This approach may be effective in ameliorating the negative effects of GI dysfunctions on mood and/or the effects of mood disorders on digestive health.”
https://pubmed.ncbi.nlm.nih.gov/37920559/
“In particular, the use of cannabis-derived compounds that decrease the impact of stress, regulate circadian rhythm, and improve mood may represent a winning strategy in case of functional GI diseases.”
https://karger.com/mca/article/6/1/130/868373/Neuro-Gastro-Cannabinology-A-Novel-Paradigm-for