Research progress on the cannabinoid type-2 receptor and Parkinson’s disease

pubmed logo

“Parkinson’s disease (PD) is featured by movement impairments, including tremors, bradykinesia, muscle stiffness, and imbalance. PD is also associated with many non-motor symptoms, such as cognitive impairments, dementia, and mental disorders. Previous studies identify the associations between PD progression and factors such as α-synuclein aggregation, mitochondrial dysfunction, inflammation, and cell death.

The cannabinoid type-2 receptor (CB2 receptor) is a transmembrane G-protein-coupled receptor and has been extensively studied as part of the endocannabinoid system. CB2 receptor is recently emerged as a promising target for anti-inflammatory treatment for neurodegenerative diseases.

It is reported to modulate mitochondrial function, oxidative stress, iron transport, and neuroinflammation that contribute to neuronal cell death. Additionally, CB2 receptor possesses the potential to provide feedback on electrophysiological processes, offering new possibilities for PD treatment. This review summarized the mechanisms underlying PD pathogenesis. We also discussed the potential regulatory role played by CB2 receptor in PD.”

https://pubmed.ncbi.nlm.nih.gov/38264546/

“Cannabinoids, as an emerging therapeutic agent, have attracted wide attention for their great potential in the treatment of various diseases.”

https://www.frontiersin.org/articles/10.3389/fnagi.2023.1298166/full

[Research progress on anti-inflammatory effects of plant-derived cannabinoid type 2 receptor modulators]

pubmed logo

“Excessive and persistent inflammatory responses are a potential pathological condition that can lead to diseases of various systems, including nervous, respiratory, digestive, circulatory, and endocrine systems.

Cannabinoid type 2 receptor(CB2R) belongs to the G protein-coupled receptor family and is widely distributed in immune cells, peripheral tissues, and the central nervous system. It plays a role in inflammatory responses under various pathological conditions. The down-regulation of CB2R activity is an important marker of inflammation and and CB2R modulators have been shown to have anti-inflammatory effects.

This study explored the relationship between CB2R and inflammatory responses, delved into its regulatory mechanisms in inflammatory diseases, and summarized the research progress on CB2R modulators from plants other than cannabis, including plant extracts and monomeric compounds, in exerting anti-inflammatory effects. The aim is to provide new insights into the prevention and treatment of inflammatory diseases.”

https://pubmed.ncbi.nlm.nih.gov/38211986/

Cannabinoids and the Endocannabinoid System in Early SARS-CoV-2 Infection and Long COVID-19-A Scoping Review

pubmed logo

“Coronavirus disease-19 (COVID-19) is a highly contagious illness caused by the SARS-CoV-2 virus.

The clinical presentation of COVID-19 is variable, often including symptoms such as fever, cough, headache, fatigue, and an altered sense of smell and taste. Recently, post-acute “long” COVID-19 has emerged as a concern, with symptoms persisting beyond the acute infection. Vaccinations remain one of the most effective preventative methods against severe COVID-19 outcomes and the development of long-term COVID-19. However, individuals with underlying health conditions may not mount an adequate protective response to COVID-19 vaccines, increasing the likelihood of severe symptoms, hospitalization, and the development of long-term COVID-19 in high-risk populations.

This review explores the potential therapeutic role of cannabinoids in limiting the susceptibility and severity of infection, both pre- and post-SARS-CoV-19 infection.

Early in the SARS-CoV-19 infection, cannabinoids have been shown to prevent viral entry, mitigate oxidative stress, and alleviate the associated cytokine storm.

Post-SARS-CoV-2 infection, cannabinoids have shown promise in treating symptoms associated with post-acute long COVID-19, including depression, anxiety, post-traumatic stress injury, insomnia, pain, and decreased appetite.

While current research primarily focuses on potential treatments for the acute phase of COVID-19, there is a gap in research addressing therapeutics for the early and post-infectious phases. This review highlights the potential for future research to bridge this gap by investigating cannabinoids and the endocannabinoid system as a potential treatment strategy for both early and post-SARS-CoV-19 infection.”

https://pubmed.ncbi.nlm.nih.gov/38202234/

https://www.mdpi.com/2077-0383/13/1/227

Cannabinoids in the treatment of cancer anorexia and cachexia: Where have we been, where are we going?

pubmed logo

“Cachexia-anorexia cancer syndrome remains an unmet clinical need with a dearth of treatment and no standard of care.

Acting through the endocannabinoid system, cannabinoids are one potential cancer cachexia treatment.

Herein, the potential mechanisms for cannabinoids for cancer cachexia are discussed as are previous and ongoing clinical trials.”

https://pubmed.ncbi.nlm.nih.gov/38197037/

https://linkinghub.elsevier.com/retrieve/pii/S2347562523001105

Cannabis Sativa targets mediobasal hypothalamic neurons to stimulate appetite

pubmed logo

“The neurobiological mechanisms that regulate the appetite-stimulatory properties of cannabis sativa are unresolved. This work examined the hypothesis that cannabinoid-1 receptor (CB1R) expressing neurons in the mediobasal hypothalamus (MBH) regulate increased appetite following cannabis vapor inhalation. Here we utilized a paradigm where vaporized cannabis plant matter was administered passively to rodents. Initial studies in rats characterized meal patterns and operant responding for palatable food following exposure to air or vapor cannabis. Studies conducted in mice used a combination of in vivo optical imaging, electrophysiology and chemogenetic manipulations to determine the importance of MBH neurons for cannabis-induced feeding behavior. Our data indicate that cannabis vapor increased meal frequency and food seeking behavior without altering locomotor activity. Importantly, we observed augmented MBH activity within distinct neuronal populations when mice anticipated or consumed food. Mechanistic experiments demonstrated that pharmacological activation of CB1R attenuated inhibitory synaptic tone onto hunger promoting Agouti Related Peptide (AgRP) neurons within the MBH. Lastly, chemogenetic inhibition of AgRP neurons attenuated the appetite promoting effects of cannabis vapor. Based on these results, we conclude that MBH neurons contribute to the appetite stimulatory properties of inhaled cannabis.”

https://pubmed.ncbi.nlm.nih.gov/38151493/

https://www.nature.com/articles/s41598-023-50112-5

The Basic Science of Cannabinoids

pubmed logo

“The cannabis plant has been used for centuries to manage the symptoms of various ailments including pain.

Hundreds of chemical compounds have been identified and isolated from the plant and elicit a variety of physiological responses by binding to specific receptors and interacting with numerous other proteins.

In addition, the body makes its own cannabinoid-like compounds that are integrally involved in modulating normal and pathophysiological processes.

As the legal cannabis landscape continues to evolve within the United States and throughout the world, it is important to understand the rich science behind the effects of the plant and the implications for providers and patients.

This narrative review aims to provide an overview of the basic science of the cannabinoids by describing the discovery and function of the endocannabinoid system, pharmacology of cannabinoids, and areas for future research and therapeutic development as they relate to perioperative and chronic pain medicine.”

https://pubmed.ncbi.nlm.nih.gov/38100799/

https://journals.lww.com/anesthesia-analgesia/fulltext/2024/01000/the_basic_science_of_cannabinoids.6.aspx

The Interplay between Cannabinoid Receptors and Microglia in the Pathophysiology of Alzheimer’s Disease

pubmed logo

“Alzheimer’s disease (AD) is characterized by massive neuronal death, brain atrophy, and loss of neurons and synapses, which all lead to a progressive cognitive decline. Neuroinflammation has been recently identified as one of the main causes of AD progression, and microglia cells are considered to have a central role in this process.

Growing evidence suggests that cannabinoids may be used as preventive treatment for AD.

An altered expression of the endocannabinoids (eCBs) and their receptors (CBRs) is reported in several neurodegenerative disorders, including AD. Moreover, the modulation of CBRs demonstrated neuroprotective effects in reducing aggregated protein deposition, suggesting the therapeutic potential of natural and synthetic CBR ligands in the treatment of neurodegenerative proteinopathies. Here, we review the current knowledge regarding the involvement of CBRs in the modulation of microglia activation phenotypes, highlighting the role of neuroinflammation in the pathogenesis of neurodegenerative diseases, like AD. We also provide an overview of recently developed candidate drugs targeting CBRs that may afford a new innovative strategy for the treatment and management of AD.”

https://pubmed.ncbi.nlm.nih.gov/38068253/

https://www.mdpi.com/2077-0383/12/23/7201

Neuroprotection and Beyond: The Central Role of CB1 and CB2 Receptors in Stroke Recovery

pubmed logo

“The endocannabinoid system, with its intricate presence in numerous cells, tissues, and organs, offers a compelling avenue for therapeutic interventions. Central to this system are the cannabinoid receptors 1 and 2 (CB1R and CB2R), whose ubiquity can introduce complexities in targeted treatments due to their wide-ranging physiological influence. Injuries to the central nervous system (CNS), including strokes and traumatic brain injuries, induce localized pro-inflammatory immune responses, termed neuroinflammation. Research has shown that compensatory immunodepression usually follows, and these mechanisms might influence immunity, potentially affecting infection risks in patients. As traditional preventive treatments like antibiotics face challenges, the exploration of immunomodulatory therapies offers a promising alternative. This review delves into the potential neuroprotective roles of the cannabinoid receptors: CB1R’s involvement in mitigating excitotoxicity and CB2R’s dual role in promoting cell survival and anti-inflammatory responses. However, the potential of cannabinoids to reduce neuroinflammation must be weighed against the risk of exacerbating immunodepression. Though the endocannabinoid system promises numerous therapeutic benefits, understanding its multifaceted signaling mechanisms and outcomes remains a challenge.”

https://pubmed.ncbi.nlm.nih.gov/38069049/

https://www.mdpi.com/1422-0067/24/23/16728

In Vitro Evidence of Selective Pro-Apoptotic Action of the Pure Cannabidiol and Cannabidiol-Rich Extract

pubmed logo

“Plant cannabinoids, secondary metabolites of species belonging to the Cannabis genus, can mimic the endocannabinoids’ action and exert biological effects. Considering the contribution of the endocannabinoid system in cell cycle and apoptotic regulation, there is an interest in exploring the potential anti-cancer activities of natural and synthetic cannabinoids. Cannabidiol (CBD), an abundant plant cannabinoid, reveals a low affinity to cannabinoid receptors and, contrary to various cannabinoids, lacks psychoactive action. Here, we present the in vitro assessment of the pro-apoptototic potential of CBD-rich extracts of Cannabis sativa L. (eCBD) compared to purified CBD (pCBD). As demonstrated, both eCBD and pCBD decreased the viability of breast cancer cell line MDA-MB-231 and human prostate cancer cell line PC-3 in a concentration-dependent fashion. Endoplasmic reticulum stress-related apoptosis and morphological changes were induced only in low-serum conditions. Moreover, the effects of eCDB and pCDB were also assessed in non-malignant cell lines (MCF-10A and PNT2) with no alterations of viability noted, ultimately suggesting a selective action of CBD in tumor cells. The results suggest the possible involvement of reactive oxygen species in the response mechanism to eCBD and pCBD, but no clear pattern was observed. We also demonstrated significant changes in gene expression involved in apoptosis and cell cycle control upon extract treatment. Altogether, our study shows the potential of eCBD and pCBD as novel pro-apoptototic agents that can be considered promising in future preclinical and clinical testing.”

https://pubmed.ncbi.nlm.nih.gov/38067615/

https://www.mdpi.com/1420-3049/28/23/7887

Cannabis as a Source of Approved Drugs: A New Look at an Old Problem

pubmed logo

“Cannabis plants have been used in medicine since ancient times. They are well known for their anti-diabetic, anti-inflammatory, neuroprotective, anti-cancer, anti-oxidative, anti-microbial, anti-viral, and anti-fungal activities. A growing body of evidence indicates that targeting the endocannabinoid system and various other receptors with cannabinoid compounds holds great promise for addressing multiple medical conditions. There are two distinct avenues in the development of cannabinoid-based drugs. The first involves creating treatments directly based on the components of the cannabis plant. The second involves a singular molecule strategy, in which specific phytocannabinoids or newly discovered cannabinoids with therapeutic promise are pinpointed and synthesized for future pharmaceutical development and validation. Although the therapeutic potential of cannabis is enormous, few cannabis-related approved drugs exist, and this avenue warrants further investigation. With this in mind, we review here the medicinal properties of cannabis, its phytochemicals, approved drugs of natural and synthetic origin, pitfalls on the way to the widespread clinical use of cannabis, and additional applications of cannabis-related products.”

https://pubmed.ncbi.nlm.nih.gov/38067416/

https://www.mdpi.com/1420-3049/28/23/7686