Activation of CB1R alleviates central sensitization by regulating HCN2-pNR2B signaling in a chronic migraine rat model

The Journal of Headache and Pain

“Background: Central sensitization has been widely accepted as an underlying pathophysiological mechanism of chronic migraine (CM), activation of cannabinoid type-1 receptor (CB1R) exerts antinociceptive effects by relieving central sensitization in many pain models. However, the role of CB1R in the central sensitization of CM is still unclear.

Methods: A CM model was established by infusing inflammatory soup (IS) into the dura of male Wistar rats for 7 days, and hyperalgesia was assessed by the mechanical and thermal thresholds. In the periaqueductal gray (PAG), the mRNA and protein levels of CB1R and hyperpolarization-activated cyclic nucleotide-gated cation channel 2 (HCN2) were measured by qRT-PCR and western blotting. After intraventricular injection of Noladin ether (NE) (a CB1R agonist), ZD 7288 (an HCN2 blocker), and AM 251 (a CB1R antagonist), the expression of tyrosine phosphorylation of N-methyl-D-aspartate receptor subtype 2B (pNR2B), calcium-calmodulin-dependent kinase II (CaMKII), and phosphorylated cAMP-responsive element binding protein (pCREB) was detected, and central sensitization was evaluated by the expression of calcitonin gene-related peptide (CGRP), c-Fos, and substance P (SP). Synaptic-associated protein (postsynaptic density protein 95 (PSD95) and synaptophysin (Syp)) and synaptic ultrastructure were detected to explore synaptic plasticity in central sensitization.

Results: We observed that the mRNA and protein levels of CB1R and HCN2 were both significantly increased in the PAG of CM rats. The application of NE or ZD 7288 ameliorated IS-induced hyperalgesia; repressed the pNR2B/CaMKII/pCREB pathway; reduced CGRP, c-Fos, SP, PSD95, and Syp expression; and inhibited synaptic transmission. Strikingly, the application of ZD 7288 relieved AM 251-evoked elevation of pNR2B, CGRP, and c-Fos expression.

Conclusions: These data reveal that activation of CB1R alleviates central sensitization by regulating HCN2-pNR2B signaling in CM rats. The activation of CB1R might have a positive influence on the prevention of CM by mitigating central sensitization.”

https://pubmed.ncbi.nlm.nih.gov/37085778/

https://thejournalofheadacheandpain.biomedcentral.com/articles/10.1186/s10194-023-01580-7

Endocannabinoid System: Chemical Characteristics and Biological Activity

pharmaceuticals-logo

“The endocannabinoid system (eCB) has been studied to identify the molecular structures present in Cannabis sativa. eCB consists of cannabinoid receptors, endogenous ligands, and the associated enzymatic apparatus responsible for maintaining energy homeostasis and cognitive processes.

Several physiological effects of cannabinoids are exerted through interactions with various receptors, such as CB1 and CB2 receptors, vanilloid receptors, and the recently discovered G-protein-coupled receptors (GPR55, GPR3, GPR6, GPR12, and GPR19). Anandamide (AEA) and 2-arachidoylglycerol (2-AG), two small lipids derived from arachidonic acid, showed high-affinity binding to both CB1 and CB2 receptors.

eCB plays a critical role in chronic pain and mood disorders and has been extensively studied because of its wide therapeutic potential and because it is a promising target for the development of new drugs. Phytocannabinoids and synthetic cannabinoids have shown varied affinities for eCB and are relevant to the treatment of several neurological diseases.

This review provides a description of eCB components and discusses how phytocannabinoids and other exogenous compounds may regulate the eCB balance. Furthermore, we show the hypo- or hyperfunctionality of eCB in the body and how eCB is related to chronic pain and mood disorders, even with integrative and complementary health practices (ICHP) harmonizing the eCB.”

https://pubmed.ncbi.nlm.nih.gov/37017445/

“The roles of cannabinoid receptors and their agonists in multiple conditions have been addressed in this review. Since research with derivatives of Cannabis has started and the biological functions of isolated compounds in experimental and human diseases have shown promising outcomes, it is evident that selective ligands of specific Cannabis receptors could induce beneficial outcomes, depending on the clinical condition. More research on the biological function of each Cannabis derivative should be encouraged.”

https://www.mdpi.com/1424-8247/16/2/148

Cannabidiol reduces LPS-induced nociception via endocannabinoid system activation

“Bacterial infections are often accompanied by fever and generalized muscle pain. However, the treatment of pain with an infectious etiology has been overlooked. Thus, we investigated the impact of cannabidiol (CBD) in bacterial lipopolysaccharide (LPS)-induced nociception.

Male Swiss mice received intrathecal (i.t.) LPS injection, and the nociceptive threshold was measured by the von Frey filaments test. Spinal involvement of the cannabinoid CB2 receptor, toll-like receptor 4 (TLR4), microglia and astrocytes were evaluated by i.t. administration of their respectively antagonists or inhibitors. Western blot, immunofluorescence, ELISA and liquid chromatography-mass spectrometry were used to assess Cannabinoid CB2 receptors and TLR4 spinal expression, proinflammatory cytokines and endocannabinoid levels. CBD was administered intraperitoneally at 10 mg/kg.

The pharmacological assay demonstrated TLR4 participation in LPS-induced nociception. In addition, spinal TLR4 expression and proinflammatory cytokine levels were increased in this process.

CBD treatment prevented LPS-induced nociception and TLR4 expression.

AM630 reversed antinociception and reduced CBD-induced endocannabinoids upregulation. Increased spinal expression of the cannabinoid CB2 receptor was also found in animals receiving LPS, which was accompanied by reduced TLR4 expression in CBD-treated mice.

Taken together, our findings indicated that CBD is a potential treatment strategy to control LPS-induced pain by attenuating TLR4 activation via the endocannabinoid system.”

https://pubmed.ncbi.nlm.nih.gov/37076976/

https://onlinelibrary.wiley.com/doi/10.1111/bcpt.13876

The Effects of Endogenous Cannabinoids on the Mammalian Respiratory System: A Scoping Review of Cyclooxygenase-Dependent Pathways

pubmed logo

“Introduction: The endogenous cannabinoid (endocannabinoid) system is an emerging target for the treatment of chronic inflammatory disease with the potential to advance treatment for many respiratory illnesses. The varied effects of endocannabinoids across tissue types makes it imperative that we explore their physiologic impact within unique tissue targets. The aim of this scoping review is to explore the impact of endocannabinoid activity on eicosanoid production as a measure of human airway inflammation. 

Methods: A scoping literature review was conducted according to PRISMA-ScR (Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews) guidelines. Search strategies using MeSH terms related to cannabinoids, eicosanoids, cyclooxygenase (COX), and the respiratory system were used to query Medline, Embase, Cochrane, CINAHL, Web of Science, and Biosis Previews in December 2021. Only studies that investigated the relationship between endocannabinoids and the eicosanoid system in mammalian respiratory tissue after 1992 were included. 

Results: Sixteen studies were incorporated in the final qualitative review. Endocannabinoid activation increases COX-2 expression, potentially through ceramide-dependent or p38 and p42/44 Mitogen-Activated Protein Kinase pathways and is associated with a concentration-dependent increase in prostaglandin (PG)E2. Inhibitors of endocannabinoid hydrolysis found either an increase or no change in levels of PGE2 and PGD2 and decreased levels of leukotriene (LT)B4, PGI2, and thromboxane A2 (TXA2). Endocannabinoids increase bronchial epithelial cell permeability and have vasorelaxant effects in human pulmonary arteries and cause contraction of bronchi and decreased gas trapping in guinea pigs. Inhibitors of endocannabinoid hydrolysis were found to have anti-inflammatory effects on pulmonary tissue and are primarily mediated by COX-2 and activation of eicosanoid receptors. Direct agonism of endocannabinoid receptors appears to play a minor role. 

Conclusion: The endocannabinoid system has diverse effects on the mammalian airway. While endocannabinoid-derived PGs can have anti-inflammatory effects, endocannabinoids also produce proinflammatory conditions, such as increased epithelial permeability and bronchial contraction. These conflicting findings suggest that endocannabinoids produce a variety of effects depending on their local metabolism and receptor agonism. Elucidation of the complex interplay between the endocannabinoid and eicosanoid pathways is key to leveraging the endocannabinoid system as a potential therapeutic target for human airway disease.”

https://pubmed.ncbi.nlm.nih.gov/37074668/

https://www.liebertpub.com/doi/10.1089/can.2022.0277

The endocannabinoid system, a new gatekeeper in the pharmacology of human hepatocellular carcinoma

Environmental Research

“Despite numerous prevention methodologies and treatment options, hepatocellular carcinoma (HCC) still remains as the third leading life-threatening cancer. It is thus pertinent to develop new treatment modality to fight this devastating carcinoma.

Ample recent studies have shown the anti-inflammatory and antitumor roles of the endocannabinoid system in various forms of cancers. Preclinical studies have also confirmed that cannabinoid therapy can be an optimal regimen for cancer treatments.

The endocannabinoid system is involved in many cancer-related processes, including induction of endoplasmic reticulum (ER) stress-dependent apoptosis, autophagy, PITRK and ERK signaling pathways, cell invasion, epithelial-mesenchymal transition (EMT), and cancer stem cell (CSC) phenotypes. Moreover, changes in signaling transduction of the endocannabinoid system can be a potential diagnostic and prognostic biomarker for HCC.

Due to its pivotal role in lipid metabolism, the endocannabinoid system affects metabolic reprogramming as well as lipid content of exosomes. In addition, due to the importance of non-coding RNAs (ncRNAs), several studies have examined the relationship between microRNAs and the endocannabinoid system in HCC. However, HCC is a pathological condition with high heterogeneity, and therefore using the endocannabinoid system for treatment has faced many controversies. While some studies favored a role of the endocannabinoid system in carcinogenesis and tumor induction, others exhibited the anticancer potential of endocannabinoids in HCC.

In this review, specific studies delineating the relationship between endocannabinoids and HCC are examined. Based on collected findings, detailed studies of the molecular mechanism of endocannabinoids as well as preclinical studies for investigating therapeutic or carcinogenic impacts in HCC cancer are strongly suggested.”

https://pubmed.ncbi.nlm.nih.gov/37062475/

https://www.sciencedirect.com/science/article/abs/pii/S0013935123007065?via%3Dihub

Special Issue: Therapeutic Potential for Cannabis and Cannabinoids

biomedicines-logo

“The number of patients reporting the use of cannabis for medical purposes, whether through state-regulated medical marijuana programs or through over-the-counter hemp extracts, continues to grow. The growth in medicinal use of cannabis has in many ways surpassed the scientific data on the benefits and hazards of cannabis, and the scientific community has largely been left playing catch-up. Since 1996, when California became the first jurisdiction to legalize medical cannabis, the number of states following suit has grown and is currently at 37, while nearly 50 countries have legalized medical cannabis (and even more have decriminalized the plant) including Canada, Austria, Uruguay, Australia, South Korea, and Lesotho.

Cannabis sp. produces a number of phytochemicals with potential medical benefits including terpenes, flavonoids, and a unique class of molecules called cannabinoids, of which Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are the two most studied. Amazingly, the plant produces over 100 different cannabinoids with different potential therapeutic targets and activities, and these remain understudied.

The therapeutic benefits of cannabinoids are due, in large part, to the endocannabinoid system that exists in the human body, in addition to the ability of cannabinoids to interact and signal through a large number of disparate receptor molecules.”

“Cannabis is a complicated plant that produces over 100 cannabinoids in addition to terpenes and flavonoids. Adding to the complexity of trying to address the mechanism of action for cannabis is the fact that the cannabinoids that have been studied have been reported to exhibit activity at a number of different receptors.

This makes cannabinoids (and cannabis) a promiscuous drug. While typically viewed as a negative, promiscuous drugs do offer some advantages, most notably the ability to target different pathways of a disease with one medication.

The field of medical cannabis is growing rapidly, and as patients continue to use this plant to treat their conditions, there will remain a growing need for the scientific and medical communities to better understand how cannabis can impact the body.”

https://www.mdpi.com/2227-9059/11/3/902

Combined non-psychoactive Cannabis components cannabidiol and β-caryophyllene reduce chronic pain via CB1 interaction in a rat spinal cord injury model

Lopiccolo & Chang in PLoS ONE – BU Linguistics

“The most frequently reported use of medical marijuana is for pain relief. However, its psychoactive component Δ9-tetrahydrocannabinol (THC) causes significant side effects. Cannabidiol (CBD) and β-caryophyllene (BCP), two other cannabis constituents, possess more benign side effect profiles and are also reported to reduce neuropathic and inflammatory pain. We evaluated the analgesic potential of CBD and BCP individually and in combination in a rat spinal cord injury (SCI) clip compression chronic pain model. Individually, both phytocannabinoids produced dose-dependent reduction in tactile and cold hypersensitivity in male and female rats with SCI. When co-administered at fixed ratios based on individual A50s, CBD and BCP produced enhanced dose-dependent reduction in allodynic responses with synergistic effects observed for cold hypersensitivity in both sexes and additive effects for tactile hypersensitivity in males. Antinociceptive effects of both individual and combined treatment were generally less robust in females than males. CBD:BCP co-administration also partially reduced morphine-seeking behavior in a conditioned place preference (CPP) test. Minimal cannabinoidergic side effects were observed with high doses of the combination. The antinociceptive effects of the CBD:BCP co-administration were not altered by either CB2 or μ-opioid receptor antagonist pretreatment but, were nearly completely blocked by CB1 antagonist AM251. Since neither CBD or BCP are thought to mediate antinociception via CB1 activity, these findings suggest a novel CB1 interactive mechanism between these two phytocannabinoids in the SCI pain state. Together, these findings suggest that CBD:BCP co-administration may provide a safe and effective treatment option for the management of chronic SCI pain.”

https://pubmed.ncbi.nlm.nih.gov/36913400/

“In conclusion, the current findings indicate that the combination of readily accessible non-psychoactive cannabis components CBD oil and BCP may be particularly effective in reducing neuropathic pain resulting from spinal cord injury. In addition, cannabinoid-like side effects were minimal using this combination. Further, the observed decrease in opioid-seeking behavior suggest that this treatment may be useful as a supplemental therapeutic to reduce opioid needed for effective pain management. Together, these findings are supportive of the beneficial effects of combining cannabis components in the armamentarium for chronic pain management.”

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0282920

Cannabidiol prevents chemotherapy-induced neuropathic pain by modulating spinal TLR4 via endocannabinoid system activation

Journal of Pharmacy and Pharmacology

“Objectives: This study aimed to investigate the effect of cannabidiol (CBD) on type 4 Toll-like receptors (TLR4), glial cells and pro-inflammatory cytokines during the neuropathic pain induced by the chemotherapy agent paclitaxel (PTX), as well as the involvement of the endocannabinoid system in this process.

Methods: Male C57BL6 mice were subjected to PTX-induced neuropathic pain. To evaluate the involvement of the TLR4, glial cells and cannabinoid CB2 receptor, specific inhibitors or antagonists were intrathecally administered. The western blotting and immunofluorescence assay was performed to evaluate the spinal expression of TLR4, microglia, astrocytes and cannabinoid CB2 receptor. The levels of spinal pro-inflammatory cytokines and endocannabinoids were determined by enzyme-linked immunosorbent assay and liquid chromatography-mass spectrometry analysis, respectively.

Key findings: CBD prevented PTX-induced neuropathic pain, and the cannabinoid CB2 receptor antagonist AM630 reversed this effect. In addition, CBD treatment inhibited the spinal expression of TLR4 and Iba1 in mice with neuropathic pain. CBD also increased spinal levels of endocannabinoids anandamide and 2-arachidonoylglycerol, and reduced levels of cytokines in mice with neuropathic pain.

Conclusions: CBD was efficient in preventing PTX-induced neuropathic pain, and this effect may involve inhibition of the TLR4 on microglia spinal with activation of the endocannabinoid system.”

https://pubmed.ncbi.nlm.nih.gov/36946366/

https://academic.oup.com/jpp/advance-article-abstract/doi/10.1093/jpp/rgad023/7083482?redirectedFrom=fulltext&login=false

Cannabinoids modulate the microbiota-gut-brain axis in HIV/SIV infection by reducing neuroinflammation and dysbiosis while concurrently elevating endocannabinoid and indole-3-propionate levels

pubmed logo

“Background: Although the advent of combination anti-retroviral therapy (cART) has transformed HIV into a manageable chronic disease, an estimated 30-50% of people living with HIV (PLWH) exhibit cognitive and motor deficits collectively known as HIV-associated neurocognitive disorders (HAND). A key driver of HAND neuropathology is chronic neuroinflammation, where proinflammatory mediators produced by activated microglia and macrophages are thought to inflict neuronal injury and loss. Moreover, the dysregulation of the microbiota-gut-brain axis (MGBA) in PLWH, consequent to gastrointestinal dysfunction and dysbiosis, can lead to neuroinflammation and persistent cognitive impairment, which underscores the need for new interventions.

Methods: We performed RNA-seq and microRNA profiling in basal ganglia (BG), metabolomics (plasma) and shotgun metagenomic sequencing (colon contents) in uninfected and SIV-infected rhesus macaques (RMs) administered vehicle (VEH/SIV) or delta-9-tetrahydrocannabinol (THC) (THC/SIV).

Results: Long-term, low-dose THC reduced neuroinflammation and dysbiosis and significantly increased plasma endocannabinoid, endocannabinoid-like, glycerophospholipid and indole-3-propionate levels in chronically SIV-infected RMs. Chronic THC potently blocked the upregulation of genes associated with type-I interferon responses (NLRC5, CCL2, CXCL10, IRF1, IRF7, STAT2, BST2), excitotoxicity (SLC7A11), and enhanced protein expression of WFS1 (endoplasmic reticulum stress) and CRYM (oxidative stress) in BG. Additionally, THC successfully countered miR-142-3p-mediated suppression of WFS1 protein expression via a cannabinoid receptor-1-mediated mechanism in HCN2 neuronal cells. Most importantly, THC significantly increased the relative abundance of Firmicutes and Clostridia including indole-3-propionate (C. botulinum, C. paraputrificum, and C. cadaveris) and butyrate (C. butyricum, Faecalibacterium prausnitzii and Butyricicoccus pullicaecorum) producers in colonic contents.

Conclusion: This study demonstrates the potential of long-term, low-dose THC to positively modulate the MGBA by reducing neuroinflammation, enhancing endocannabinoid levels and promoting the growth of gut bacterial species that produce neuroprotective metabolites, like indole-3-propionate. The findings from this study may benefit not only PLWH on cART, but also those with no access to cART and more importantly, those who fail to suppress the virus under cART.”

https://pubmed.ncbi.nlm.nih.gov/36890518/

Cannabinoids in traumatic brain injury and related neuropathologies: preclinical and clinical research on endogenous, plant-derived, and synthetic compounds

Journal of Neuroinflammation | Scholars Portal Journals

“Traumatic brain injury is common, and often results in debilitating consequences. Even mild traumatic brain injury leaves approximately 20% of patients with symptoms that persist for months. Despite great clinical need there are currently no approved pharmaceutical interventions that improve outcomes after traumatic brain injury. Increased understanding of the endocannabinoid system in health and disease has accompanied growing evidence for therapeutic benefits of Cannabis sativa. This has driven research of Cannabis’ active chemical constituents (phytocannabinoids), alongside endogenous and synthetic counterparts, collectively known as cannabinoids. Also of therapeutic interest are other Cannabis constituents, such as terpenes. Cannabinoids interact with neurons, microglia, and astrocytes, and exert anti-inflammatory and neuroprotective effects which are highly desirable for the management of traumatic brain injury. In this review, we comprehensively appraised the relevant scientific literature, where major and minor phytocannabinoids, terpenes, synthetic cannabinoids, and endogenous cannabinoids were assessed in TBI, or other neurological conditions with pathology and symptomology relevant to TBI, as well as recent studies in preclinical TBI models and clinical TBI populations.”

https://pubmed.ncbi.nlm.nih.gov/36935484/

“Diseases with complex, multifaceted pathology, such as TBI, may require treatment that is multi-mechanistic, such as whole plant cannabis extracts.”

https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-023-02734-9