The Therapeutic Potential of the Endocannabinoid System in Age-Related Diseases

biomedicines-logo

“The endocannabinoid system (ECS) dynamically regulates many aspects of mammalian physiology. ECS has gained substantial interest since growing evidence suggests that it also plays a major role in several pathophysiological conditions due to its ability to modulate various underlying mechanisms. Furthermore, cannabinoids, as components of the cannabinoid system (CS), have proven beneficial effects such as anti-inflammatory, immunomodulatory, neuromodulatory, antioxidative, and cardioprotective effects. In this comprehensive review, we aimed to describe the complex interaction between CS and most common age-related diseases such as neuro-degenerative, oncological, skeletal, and cardiovascular disorders, together with the potential of various cannabinoids to ameliorate the progression of these disorders. Since chronic inflammation is postulated as the pillar of all the above-mentioned medical conditions, we also discuss in this paper the potential of CS to ameliorate aging-associated immune system dysregulation.”

https://pubmed.ncbi.nlm.nih.gov/36289755/

“The cannabinoid system has the potential to ameliorate different underlying mechanism involved in the progression of aging-related diseases. Additionally, ECS may represent a promising approach not only for the treatment, but also for the alleviation of age-related disorder-associated symptoms and/or for increasing the efficacy of existing drugs. Moreover, our findings show that cannabinoids may be able to modulate various mechanisms rather than targeting a single dysregulated pathway in age-related diseases. Natural as well as synthetic cannabinoids ameliorate the balance between neurodegeneration and neuroinflammation in neurodegenerative diseases. In addition, they may play an important role in modulating the complex physio-pathology of MS and may be used as immune modulators, neuroprotectors, or remyelination promoters. The modulation of pro-inflammatory cytokines through the endogenous cannabinoid system may have beneficial effects on MS, AD, PD, aging-related musculoskeletal changes, and CVDs. On the other hand, it is clearly now that targeting the ECS with various natural or synthetic compounds may have the theoretical potential of an improved control of cancer progression.”

https://www.mdpi.com/2227-9059/10/10/2492/htm

Cannabinoids and terpenes for diabetes mellitus and its complications: from mechanisms to new therapies

Trends in Endocrinology & Metabolism (@Trends_Endo_Met) / Twitter

“The number of people diagnosed with diabetes mellitus and its complications is markedly increasing worldwide, leading to a worldwide epidemic across all age groups, from children to older adults. Diabetes is associated with premature aging. In recent years, it has been found that peripheral overactivation of the endocannabinoid system (ECS), and in particular cannabinoid receptor 1 (CB1R) signaling, plays a crucial role in the progression of insulin resistance, diabetes (especially type 2), and its aging-related comorbidities such as atherosclerosis, nephropathy, neuropathy, and retinopathy. Therefore, it is suggested that peripheral blockade of CB1R may ameliorate diabetes and diabetes-related comorbidities. The use of synthetic CB1R antagonists such as rimonabant has been prohibited because of their psychiatric side effects. In contrast, phytocannabinoids such as cannabidiol (CBD) and tetrahydrocannabivarin (THCV), produced by cannabis, exhibit antagonistic activity on CB1R signaling and do not show any adverse side effects such as psychoactive effects, depression, or anxiety, thereby serving as potential candidates for the treatment of diabetes and its complications. In addition to these phytocannabinoids, cannabis also produces a substantial number of other phytocannabinoids, terpenes, and flavonoids with therapeutic potential against insulin resistance, diabetes, and its complications. In this review, the pathogenesis of diabetes, its complications, and the potential to use cannabinoids, terpenes, and flavonoids for its treatment are discussed.”

https://pubmed.ncbi.nlm.nih.gov/36280497/

“Cannabis components (phytocannabinoids and terpenes) may exert antagonistic activity on CB1R signaling without causing deleterious side effects. Hence, phytocannabinoids and terpenes may be excellent potential candidates for the treatment of diabetes and its complications.”

https://www.cell.com/trends/endocrinology-metabolism/fulltext/S1043-2760(22)00162-X?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS104327602200162X%3Fshowall%3Dtrue

Use of Cannabis and Cannabinoids for Treatment of Cancer

cancers-logo

“The endocannabinoid system (ECS) is an ancient homeostasis mechanism operating from embryonic stages to adulthood. It controls the growth and development of many cells and cell lineages. Dysregulation of the components of the ECS may result in uncontrolled proliferation, adhesion, invasion, inhibition of apoptosis and increased vascularization, leading to the development of various malignancies. Cancer is the disease of uncontrolled cell division.

In this review, we will discuss whether the changes to the ECS are a cause or a consequence of malignization and whether different tissues react differently to changes in the ECS. We will discuss the potential use of cannabinoids for treatment of cancer, focusing on primary outcome/care-tumor shrinkage and eradication, as well as secondary outcome/palliative care-improvement of life quality, including pain, appetite, sleep, and many more factors. Finally, we will complete this review with the chapter on sex- and gender-specific differences in ECS and response to cannabinoids, and equality of the access to treatments with cannabinoids.”

https://pubmed.ncbi.nlm.nih.gov/36291926/

“Cancer is a disease which affects approximately 40% of people in their lifetime. Chemotherapy, the primary choice for treatment of cancer, is often ineffective or/and presents itself with many debilitating side effects, including loss of appetite, nausea, insomnia, and anxiety. Components of cannabis extracts, including cannabinoids and terpenes, may present an alternative for controlling side effects and may be used for tumor shrinkage together with chemodrugs.

Cannabinoids act on so called endocannabinoid system (ECS) that operates in our body to maintain homeostasis. ECS promotes healthy development of tissues and regulates many processes in our organism and when disbalanced may lead to disease, including cancer. In this review, we will discuss the role of the ECS in relation with carcinogenesis and use of cannabis extracts and their components for primary and secondary care of cancer.

Knowledge about the use of cannabinoids for cancer therapy may prolong the life of many cancer patients.

Here, we showed substantial preclinical and clinical evidence of the potential of cannabinoids and cannabis extracts in primary and palliative care of cancer.”

https://www.mdpi.com/2072-6694/14/20/5142/htm

The Synthetic Cannabinoid URB447 Exerts Antitumor and Antimetastatic Effect in Melanoma and Colon Cancer

pharmaceuticals-logo

“The endocannabinoid system is widespread through the body and carries out a wide variety of functions. However, its involvement in other pathologies, such as cancer, still needs further attention. We aim to investigate the role of CB2 receptor during melanoma and colorectal cancer (CRC) aggressiveness and metastatic growth in the liver. We used the synthetic cannabinoid URB447, a known CB2 agonist and CB1 antagonist drug, and studied prometastatic ability of mouse B16 melanoma and MCA38 CRC cells, by means of proliferation, apoptosis, cell cycle, migration and matrix degradation in vitro upon URB447 treatment. We reported a dose-dependent viability decrease in both tumor types. This result is partly mediated by apoptotic cell death and cell cycle arrest in G1/G0 phase, as observed through flow cytometry. Melanoma and CRC cell migration was affected in a dose-dependent fashion as observed through scratch assay, whereas the secretion of matrix degrading proteins metalloprotease 2 (MMP2) and 9 (MMP9) in tumor cells did not significantly change. Moreover, daily treatment of tumor bearing mice with URB447 decreased the development of liver metastasis in a melanoma model in vivo. This proof of concept study points out to the synthetic cannabinoid URB447 as a potential candidate for deeper studies to confirm its potential as antitumor therapy and liver metastasis treatment for CRC and melanoma.”

https://pubmed.ncbi.nlm.nih.gov/36297277/

https://www.mdpi.com/1424-8247/15/10/1166/htm

Targeting the cannabinoid system to counteract the deleterious effects of stress in Alzheimer’s disease

Frontiers - Crunchbase Company Profile & Funding

“Alzheimer’s disease is a progressive neurodegenerative disorder characterized histologically in postmortem human brains by the presence of dense protein accumulations known as amyloid plaques and tau tangles. Plaques and tangles develop over decades of aberrant protein processing, post-translational modification, and misfolding throughout an individual’s lifetime. We present a foundation of evidence from the literature that suggests chronic stress is associated with increased disease severity in Alzheimer’s patient populations. Taken together with preclinical evidence that chronic stress signaling can precipitate cellular distress, we argue that chronic psychological stress renders select circuits more vulnerable to amyloid- and tau- related abnormalities. We discuss the ongoing investigation of systemic and cellular processes that maintain the integrity of protein homeostasis in health and in degenerative conditions such as Alzheimer’s disease that have revealed multiple potential therapeutic avenues. For example, the endogenous cannabinoid system traverses the central and peripheral neural systems while simultaneously exerting anti-inflammatory influence over the immune response in the brain and throughout the body. Moreover, the cannabinoid system converges on several stress-integrative neuronal circuits and critical regions of the hypothalamic-pituitary-adrenal axis, with the capacity to dampen responses to psychological and cellular stress. Targeting the cannabinoid system by influencing endogenous processes or exogenously stimulating cannabinoid receptors with natural or synthetic cannabis compounds has been identified as a promising route for Alzheimer’s Disease intervention. We build on our foundational framework focusing on the significance of chronic psychological and cellular stress on the development of Alzheimer’s neuropathology by integrating literature on cannabinoid function and dysfunction within Alzheimer’s Disease and conclude with remarks on optimal strategies for treatment potential.”

https://pubmed.ncbi.nlm.nih.gov/36268196/

https://www.frontiersin.org/articles/10.3389/fnagi.2022.949361/full

Anti-cancer effects of selective cannabinoid agonists in pancreatic and breast cancer cells

“Objective: Cancer ranks first among the causes of morbidity and mortality all over the world, and it is expected to continue to be the main cause of death in the coming years. Therefore, new molecular targets and therapeutic strategies are urgently needed. In many cases, some reports show increased levels of endocannabinoids and their receptors in cancer, a condition often associated with tumour aggressiveness. Recent studies have suggested that cannabinoid-1/2 receptors contribute to tumour growth in a variety of cancers, including pancreatic, colon, prostate, and breast cancer. Understanding how cannabinoids can regulate key cellular processes involved in tumorigenesis, such as: cell proliferation and cell death, is crucial to improving existing and new therapeutic approaches for the cancer patients. The present study was aimed to characterize the in-vitro effect of L-759633 (a selective CB2 receptor agonist), ACPA (a selective CB1 receptor agonist) and ACEA (a selective CB1 receptor agonist) on the cell proliferation, clonogenicity, and apoptosis in pancreatic (PANC1) and breast (MDA-MB-231) cancer cells.

Methods: The viability and/or proliferation of cells were detected by MTS assay. A clonogenic survival assay was used to detect the ability of a single cell to grow into a colony. Apoptosis was determined with Annexin V staining (Annexin V-FITC/PI test) and by analyzing the expression of Bcl-2-associated X protein (Bax) and B-cell lymphoma 2 (Bcl-2).

Results: We found that selective CB1/2 agonists suppressed cell proliferation, clonogenicity and induced proapoptotic function in human PANC1 pancreatic and MDA-MB-231 breast cancer cells. Based on our findings, these agonists led to the inhibition of both cell viability and clonogenic growth in a dose dependent manner. CB1/2 agonists were observed to induce intrinsic apoptotic pathway by upregulating Bax, while downregulating Bcl-2 expression levels.

Conclusion: Our data suggests that CB1/2 agonists have the therapeutic potential through the inhibition of survival of human PANC1 pancreatic and MDA-MB-231 breast cancer cells and also might be linked with further cellular mechanisms for the prevention.”

https://pubmed.ncbi.nlm.nih.gov/36254639/

http://www.elis.sk/index.php?page=shop.product_details&flypage=flypage.tpl&product_id=7812&category_id=179&option=com_virtuemart&vmcchk=1&Itemid=1

“Analysis of Anti-Cancer and Anti-Inflammatory Properties of 25 High-THC Cannabis Extracts”

https://pubmed.ncbi.nlm.nih.gov/36144796/

Evaluation of cannabinoid type 2 receptor expression and pyridine-based radiotracers in brains from a mouse model of Alzheimer’s disease

Frontiers - Crunchbase Company Profile & Funding

“Neuroinflammation plays an important role in the pathophysiology of Alzheimer’s disease. The cannabinoid type 2 receptor (CB2R) is an emerging target for neuroinflammation and therapeutics of Alzheimer’s disease. Here, we aim to assess the alterations in brain CB2R levels and evaluate novel CB2R imaging tracers in the arcAß mouse model of Alzheimer’s disease amyloidosis. Immunohistochemical staining for amyloid-ß deposits (6E10), microgliosis (anti-Iba1 and anti-CD68 antibodies), astrocytes (GFAP) and the anti-CB2R antibody was performed on brain slices from 17-month-old arcAß mice. Autoradiography using the CB2R imaging probes [18F]RoSMA-18-d6, [11C]RSR-056, and [11C]RS-028 and mRNA analysis were performed in brain tissue from arcAß and non-transgenic littermate (NTL) mice at 6, 17, and 24 months of age. Specific increased CB2R immunofluorescence intensities on the increased number of GFAP-positive astrocytes and Iba1-positive microglia were detected in the hippocampus and cortex of 17-month-old arcAß mice compared to NTL mice. CB2R immunofluorescence was higher in glial cells inside 6E10-positive amyloid-ß deposits than peri-plaque glial cells, which showed low background immunofluorescence in the hippocampus and cortex of 17-month-old arcAß mice. Ex vivo autoradiography showed that the specific binding of [18F]RoSMA-18-d6 and [11C]RSR-056 was comparable in arcAß and NTL mice at 6, 17, and 24 months of age. The level of Cnr2 mRNA expression in the brain was not significantly different between arcAß and NTL mice at 6, 17, or 24 months of age. In conclusion, we demonstrated pronounced specific increases in microglial and astroglial CB2R expression levels in a mouse model of AD-related cerebral amyloidosis, emphasizing CB2R as a suitable target for imaging neuroinflammation.”

https://pubmed.ncbi.nlm.nih.gov/36248003/

https://www.frontiersin.org/articles/10.3389/fnagi.2022.1018610/full

Design and function of targeted endocannabinoid nanoparticles

Scientific Reports

“Nanoparticles and nano-delivery systems are constantly being refined and developed for biomedical applications such as imaging, gene therapy, and targeted delivery of drugs. Nanoparticles deliver beneficial effects by both release of their cargo and by liberation of their constitutive structural components. The N-acylethanolamines linoleoyl ethanolamide (LEA) and oleoyl ethanolamide (OEA) both exhibit endocannabinoid-like activity. Here, we report on their ability to form nanoparticles that when conjugated with tissue-specific molecules, are capable of localizing to specific areas of the body and reducing inflammation. The facilitation of pharmacological effects by endocannabinoids at targeted sites provides a novel biocompatible drug delivery system and a therapeutic approach to the treatment, patient management and quality of life, in conditions such as arthritis, epilepsy, and cancer.”

https://pubmed.ncbi.nlm.nih.gov/36241847/

https://www.nature.com/articles/s41598-022-21715-1

Endocannabinoid signaling in microglia

“Microglia, the innate immune cells of the central nervous system (CNS), execute their sentinel, housekeeping and defense functions through a panoply of genes, receptors and released cytokines, chemokines and neurotrophic factors. Moreover, microglia functions are closely linked to the constant communication with other cell types, among them neurons. Depending on the signaling pathway and type of stimuli involved, the outcome of microglia operation can be neuroprotective or neurodegenerative. Accordingly, microglia are increasingly becoming considered cellular targets for therapeutic intervention.

Among signals controlling microglia activity, the endocannabinoid (EC) system has been shown to exert a neuroprotective role in many neurological diseases.

Like neurons, microglia express functional EC receptors and can produce and degrade ECs. Interestingly, boosting EC signaling leads to an anti-inflammatory and neuroprotective microglia phenotype. Nonetheless, little evidence is available on the microglia-mediated therapeutic effects of EC compounds.

This review focuses on the EC signals acting on the CNS microglia in physiological and pathological conditions, namely on the CB1R, CB2R and TRPV1-mediated regulation of microglia properties. It also provides new evidence, which strengthens the understanding of mechanisms underlying the control of microglia functions by ECs.

Given the broad expression of the EC system in glial and neuronal cells, the resulting picture is the need for in vivo studies in transgenic mouse models to dissect the contribution of EC microglia signaling in the neuroprotective effects of EC-derived compounds.”

https://pubmed.ncbi.nlm.nih.gov/36222019/

https://onlinelibrary.wiley.com/doi/10.1002/glia.24281

Tonic Endocannabinoid Levels Modulate Retinal Signaling

ijerph-logo

“The endocannabinoid (eCB) system is critically involved in the modulation of synaptic transmission in the central nervous system, playing an important role in the control of emotional responses, neurodevelopment and synaptic plasticity among other functions. The eCB system is also present in the retina, with studies indicating changes in function after application of cannabinoid receptor agonists, antagonists and in knockout models. Whether eCBs are tonically released in the retina and their physiological functions is, however, still unknown. We investigated the role of the eCB system in the modulation of response strength of retinal ganglion cells (RGCs) to light stimulation, their receptive field organization, contrast sensitivity and excitability properties by performing whole-cell patch-clamp recordings in mouse RGCs before and after bath application of URB597, an inhibitor of the enzyme that degrades the eCB anandamide. Our results show that URB597 application leads to a reduction in the strength of synaptic inputs onto RGCs but paradoxically increases RGC excitability. In addition, URB597 was shown to modulate receptive field organization and contrast sensitivity of RGCs. We conclude that tonically released eCBs modulate retinal signaling by acting on traditional cannabinoid receptors (CB1R/CB2R) as well as on non-cannabinoid receptor targets. Thus, a thorough understanding of the effects of drugs that alter the endogenous cannabinoid levels and of exogenous cannabinoids is necessary to fully comprehend the impact of their medical as well as recreational use on vision.”

https://pubmed.ncbi.nlm.nih.gov/36231760/

https://www.mdpi.com/1660-4601/19/19/12460/htm