Early oral administration of THC:CBD formulations prevent pain-related behaviors without exacerbating paclitaxel-induced changes in weight, locomotion, and anxiety in a rat model of chemotherapy-induced neuropathy

pubmed logo

“Rationale: Paclitaxel-induced neuropathy stands out as the primary, dose-limiting side effect of this extensively used chemotherapy agent. Prolonged hypersensitivity and pain represent the most severe clinical manifestations. Effective preventive and therapeutic strategies are currently lacking.

Objectives: Our study aimed to assess the impact of early oral administration of pharmaceutical-grade formulations containing the phytocannabinoids THC and CBD in a rat model of paclitaxel-induced neuropathy.

Methods: The experimental design involved the co-administration of paclitaxel and cannabinoid formulations with different THC to CBD ratios (THC:CBD 1:1 and THC:CBD 1:20) to adult male rats. Mechanical and thermal sensitivity, locomotor activity, vertical exploratory behaviors, anxiety-related parameters, weight gain, food and water consumption, and liver functionality were assessed.

Results: Daily administration of THC:CBD 1:1 successfully prevented paclitaxel-induced cold allodynia, while THC:CBD 1:20 effectively prevented both thermal and mechanical hypersensitivities. Additionally, THC:CBD 1:1 formulation restored rearing behavior, significantly reduced by paclitaxel. Conversely, neither cannabinoid formulation was able to counteract paclitaxel-induced hypo-locomotion, reduced vertical exploratory activity, increased anxiety-like behaviors, attenuated weight gain, or decreased food and water intakes. However, the formulations employed did not induce further alterations or toxicity in animals receiving paclitaxel, and no signs of liver damage were detected.

Conclusions: Our results suggest a differential therapeutic effect of two THC:CBD formulations on pain-related behaviors and spontaneous activities, particularly in the context of peripheral neuropathy. These formulations represent a promising therapeutic strategy not only to managing pain but also for enhancing daily activities and improving the quality of life for cancer patients.”

https://pubmed.ncbi.nlm.nih.gov/40163146/

The Therapeutic Potential of Cannabidiol in the Management of Temporomandibular Disorders and Orofacial Pain

pubmed logo

“Background: Temporomandibular disorders (TMDs) are a group of conditions affecting the temporomandibular joint (TMJ) and associated muscles, leading to pain, restricted jaw movement, and impaired quality of life. Conventional treatments, including physical therapy, medications, and surgical interventions, have varying degrees of success and potential side effects. Cannabidiol (CBD), a non-psychoactive component of cannabis, has gained attention for its anti-inflammatory, analgesic, and anxiolytic properties. This study explores the potential role of CBD in TMD management. 

Methods: A review of existing literature was conducted (2007-2024), focusing on preclinical and clinical studies assessing the efficacy of CBD in pain modulation, inflammation reduction, and muscle relaxation. Relevant studies were sourced from PubMed, Scopus, and Web of Science databases. Additionally, potential mechanisms of action, including interactions with the endocannabinoid system, were analyzed. 

Results: Studies suggest that CBD exerts analgesic and anti-inflammatory effects by modulating CB1 and CB2 receptors, reducing cytokine release, and influencing neurotransmitter pathways. Preliminary clinical evidence indicates that CBD may alleviate TMD-related pain and muscle tension with minimal adverse effects. However, high-quality randomized controlled trials are limited. 

Conclusions: CBD demonstrates promise as a potential adjunctive treatment for TMD. Further research, including well-designed clinical trials, is necessary to establish its efficacy, optimal dosage, and long-term safety.”

https://pubmed.ncbi.nlm.nih.gov/40142992/

“Within the limitations of this review, current evidence suggests that cannabidiol (CBD) holds promise as a therapeutic adjunct for managing temporomandibular disorders (TMD). Multiple preclinical and preliminary clinical studies highlight that CBD may reduce muscle hyperactivity, alleviate inflammatory pain, and potentially improve patient-reported outcomes such as sleep and anxiety. These findings align with the review’s primary objective, which was to assess whether CBD could mitigate TMD symptoms and serve as a viable treatment option.”

https://www.mdpi.com/1999-4923/17/3/328

Terpene blends from Cannabis sativa are cannabimimetic and antinociceptive in a mouse chronic neuropathic pain model via activation of adenosine A2a receptors

pubmed logo

“An increase in the use of medicinal Cannabis for pain management has spurred research into the understudied bioactive compounds in Cannabis, such as terpenes.

In our previous work, we showed that isolated and purified terpenes were cannabimimetic and also relieved chemotherapy-induced peripheral neuropathy (CIPN) pain via activation of Adenosine A2a Receptors (A2aR) in the spinal cord. However, terpenes are most often consumed by the public as complex extracts and mixtures, not purified individual terpenes, and whether this cannabimimetic and antinociceptive activity holds true in terpene extracts and blends is not clear.

In this study, we thus extracted terpene blends from three distinct Cannabis chemovars and assessed these blends in male and female CD-1 mice for their cannabimimetic activity in the tetrad assay and pain-relieving properties in a CIPN model.

Each terpene blend was unique in the relative amounts of different terpenes extracted. Though each blend was unique, each similarly elicited cannabimimetic behaviors of catalepsy, hyperlocomotion, and hypothermia, without tail flick analgesia.

All three terpene blends effectively relieved CIPN, though the antinociception was more robust in male than in female mice. This antinociception was recapitulated by purified Myrcene but not D-Limonene. The A2aR antagonist istradefylline blocked the pain-relieving effects of all three terpene blends, suggesting that the terpene blends act on A2aR to relieve CIPN pain.

Together, these findings suggest that terpene blends have similar pharmacological effects as purified single terpenes, and that observations made with single terpenes may be applicable to the complex terpene mixtures commonly consumed by the public.”

https://pubmed.ncbi.nlm.nih.gov/40122228/

https://www.sciencedirect.com/science/article/abs/pii/S030439402500093X?via%3Dihub

Cannabidiol reduces neuropathic pain and cognitive impairments through activation of spinal PPARγ

pubmed logo

“The purpose of this study was to evaluate the participation of spinal peroxisome proliferator-activated receptor gamma (PPARγ) in the antiallodynic effect of cannabidiol, the expression of PPARγ in sites relevant to the spinal nociceptive processing, and the effect of this cannabinoid on cognitive deficits induced by neuropathic pain in female mice.

Either acute or repeated treatment with cannabidiol reduced tactile allodynia and spontaneous pain (flinching) in female neuropathic mice. Pioglitazone partially reduced tactile allodynia, and this effect was fully blocked by the PPARγ antagonist GW9662. Likewise, intrathecal injection of cannabidiol reduced tactile allodynia, while PPARγ antagonist GW9662 or 5-HT1A receptor antagonist WAY-100635, but not the PPARα antagonist GW6479, partially prevented this effect. GW9662 and WAY-100635 administrated per se did not modify tactile allodynia in neuropathic female mice. Co-administration of GW9662 and WAY-100635 fully prevented the antiallodynic effect of cannabidiol in mice. Nerve injury up-regulated PPARγ expression at the spinal cord and dorsal root ganglia, while cannabidiol further enhanced nerve injury-induced up-regulation of PPARγ expression in both tissues.

Repeated intrathecal injection of cannabidiol reduced tactile allodynia and several pain makers (ERK, p-ERK, p38MAPK and p-p38MAPK). In addition, this treatment restored nerve injury-induced interleukin-10 down-regulation and increased PPARγ expression at the spinal cord. Repeated treatment with cannabidiol also improved nerve injury-induced cognitive impairment in mice.

These results provide compelling evidence for the involvement of PPARγ in the antiallodynic effect of cannabidiol in mice and highlight its multifaceted therapeutic potential in neuropathic pain management and its comorbidities.

PERSPECTIVE: The present study reveals cannabidiol’s dual effects in female mice by reducing neuropathic pain through spinal PPARγ and 5-HT1A receptor activation and ameliorating nerve injury-induced cognitive impairment. These findings may assist clinicians seeking new therapeutic approaches for managing neuropathic pain and its associated cognitive deficits.”

https://pubmed.ncbi.nlm.nih.gov/40112940/

https://www.jpain.org/article/S1526-5900(25)00605-4/abstract

UK Medical Cannabis Registry: An Analysis of Outcomes of Medical Cannabis Therapy for Hypermobility-Associated Chronic Pain

pubmed logo

“Objective: The study aims to evaluate the clinical outcomes in patients with hypermobility spectrum disorder (HSD) and hypermobile Ehlers-Danlos syndrome (hEDS) with chronic pain following treatment with cannabis-based medicinal products (CBMPs).

Methods: This was a case series conducted with the UK Medical Cannabis Registry. The primary outcomes were changes in the following validated patient-reported outcome measures at 1, 3, 6, 12, and 18 months compared with baseline: Short-Form McGill Pain Questionnaire 2 (SF-MPQ-2), pain visual analog scale score (Pain-VAS), Brief Pain Inventory (BPI), five-level EQ-5D (EQ-5D-5L), Single-Item Sleep Quality Scale (SQS), General Anxiety Disorder Seven-Item Scale (GAD-7), and Patient Global Impression of Change. The incidence of adverse events was analyzed as secondary outcomes. Statistical significance was defined as P <0.050.

Results: A total of 161 patients met inclusion criteria. Improvements were observed in BPI severity and interference subscales, SF-MPQ-2, and Pain-VAS (P < 0.001). Changes were also seen in the EQ-5D-5L index value, SQS, and GAD-7 (P < 0.001). A total of 50 patients (31.06%) reported one or more adverse event with a total incidence of 601 (373.29%). The most frequent rating for adverse events was moderate (n = 258; 160.25%), with headache being the most common (n = 44; 27.33%).

Conclusion: An association was identified between patients with HSD/hEDS with chronic pain and improvements in pain-specific and general health-related quality of life following the commencement of CBMPs. CBMPs were also well tolerated at 18 months. These findings must be interpreted within the context of the limitations of study design but add further weight to calls for randomized controlled trials.”

https://pubmed.ncbi.nlm.nih.gov/40079426/

“Cannabis-based medicinal products (CBMPs) have emerged as a potential alternative for chronic pain management, acting on the endocannabinoid system (ECS), which plays a pivotal role in pain regulation.”

“This study reports an association between CBMP treatment and reported improvements in pain and HRQoL among patients with HSD/hEDS.”

https://acrjournals.onlinelibrary.wiley.com/doi/10.1002/acr2.70024

Improvement in the Cognitive Function in Chronic Pain: Therapeutic Potential of the Endocannabinoid System

pubmed logo

“Chronic pain presents as a complex condition encompassing sensory (Zhang Z et al. Cell Rep 12;752-759, 2015) and emotional components, often accompanied by anxiety, depression, insomnia, and cognitive impairment. These factors significantly hinder daily activities and rehabilitation efforts.

The widespread prevalence of chronic pain imposes substantial clinical, societal, and economic burdens. While current analgesics have limitations and associated side effects such as tolerance, dependency, cognitive deficits, and a narrow therapeutic window, the search for new analgesic options remains imperative.

The endocannabinoid system (ECS), a key modulator in pain processing pathways, plays a crucial role in executive functions. This review specifically focuses on the cognitive impairments associated with chronic pain and highlights the pivotal role of the ECS in the cognitive aspects of pain. Additionally, the effectiveness of cannabinoid-based medications in improving executive functions in patients with chronic pain is evaluated.”

https://pubmed.ncbi.nlm.nih.gov/40059255/

https://link.springer.com/article/10.1007/s12035-025-04814-8

Spinal dorsal horn neurons involved in the alleviating effects of cannabinoid receptor agonists on neuropathic allodynia-like behaviors in rats

pubmed logo

“Mechanical allodynia, the pain caused by innocuous tactile stimuli, is a hallmark symptom of neuropathic pain that is often resistant to currently available treatments.

Cannabinoids are widely used for pain management; however, their therapeutic mechanisms for neuropathic mechanical allodynia remain unclear.

Using transgenic rats that enable to optogenetically stimulate touch-sensing Aβ fibers in the skin, we found that the intrathecal administration of the synthetic cannabinoid, WIN 55,212-2, alleviated the Aβ fiber-derived neuropathic allodynia. Furthermore, we injected adeno-associated virus vectors incorporating the rat cannabinoid receptor 1 (CB1 receptor) (encoded by Cnr1) promoter and tdTomato or short hairpin RNA targeting the CB1 receptor into the spinal dorsal horn (SDH) and demonstrated that the conditional knockdown of CB1 receptors in Cnr1+ SDH neurons attenuates the anti-allodynic effects of intrathecally administered WIN 55,212-2. Electrophysiological analysis revealed that Cnr1+ SDH neurons received excitatory synaptic inputs from the primary afferent Aβ fibers.

Collectively, our results suggest that the CB1 receptors in Cnr1+ SDH neurons are molecular and cellular targets of intrathecal WIN 55,212-2 to alleviate neuropathic allodynia.”

https://pubmed.ncbi.nlm.nih.gov/40058945/

https://linkinghub.elsevier.com/retrieve/pii/S1347861325000180

“WIN 55,212-2 is a chemical described as an aminoalkylindole derivative, which produces effects similar to those of cannabinoids such as tetrahydrocannabinol (THC) “

Evaluation of cannabis-derived anti-inflammatory and analgesic treatment in animals and identification of cannabinoid-based effective inhibition of prostaglandin through computational studies

pubmed logo

“Many medical conditions are accompanied by severe pain. Acute pain refers to the experience of pain that lasts for only a few hours, whereas chronic pain is the ongoing emergence of pain signals over an extended period.

Since ancient times, cannabis has been utilized for medical purposes.

This article demonstrates the medicinal importance of cannabinoids through their analgesic and anti-inflammatory activities. Additionally, the mechanisms of cannabinoid-induced analgesia have been interpreted via preclinical investigations in animals. Cannabinoid extracts were formulated into gel and cream at concentrations of 2.5% and 5%.

The cannabis cream showed the highest analgesic activity at 5% compared to methyl salicylate as a control. Moreover, cannabis gel produced a comparable anti-inflammatory effect at 5% against the standard diclofenac sodium.

Molecular docking studies of all cannabinoids were performed to understand their modes of interaction and binding affinities with the cyclooxygenase II receptor. Additionally, molecular dynamics simulation studies were conducted for for both the ligand-free and cannabidiol-bound cyclooxygenase II to validate the in vivo and molecular docking results. During simulations, the stability of the protein was analyzed using root-mean-square deviation and root-mean-square fluctuation. The study of trajectories of the ligand-free and ligand-bound proteins was assessed using radius of gyration and solvent accessible surface area. Molecular mechanics/generalized Born surface area was used to evaluate the free energies of ligand binding. Dynamic cross-correlation matrix, principal component analysis and free energy landscape characterized the conformational changes and relative energies of them, which shows the existence of two metastable conformations in cyclooxygenase II, one of which is possibly the native state with catalytic activity.

In conclusion, the data from this study support the use of medicinal cannabis in the management of pain. To mitigate the suffering of patients experiencing extreme pain, the rational use of cannabis-based drugs merits significant consideration.”

https://pubmed.ncbi.nlm.nih.gov/40048308/

https://www.tandfonline.com/doi/full/10.1080/07391102.2025.2472180

The Pharmacology of Cannabinoids in Chronic Pain

pubmed logo

“Background: Our objective was to provide an overview of the currently available scientific and clinical data supporting the use of Cannabis and Cannabis-derived products for the treatment of chronic pain disorders. We also provide information for researchers, clinicians, and patients to be better informed and understand the approach behind the recommendation of Cannabis as a potential adjuvant in the treatment/control of chronic pain. Cannabis and its bioactive compounds have sparked interest in the field of pain treatment in spite of its controversial history and status as a controlled substance in many countries. With the increase in chronic pain, physicians and patients have started to look at alternative ways to treat pain aside from traditional treatments. One alternative is the use of cannabis to reduce/treat chronic pain disorders based on anecdotal accounts and the function of its phytocannabinoids. The two main cannabinoids in cannabis, tetrahydrocannabinol (THC) and cannabidiol, act on CB1 and CB2 receptors (in addition to several additional receptors). It is through these pleiotropic receptor interactions that these compounds elicit their biological function including the reduction of chronic pain. In this narrative review, we included the most recent evidence supporting the use of cannabis in the treatment of chronic pain disorders including chronic neuropathic pain, cancer-induced neuropathic pain, chronic musculoskeletal pain, and chronic headaches and migraines.

Summary: Evidence suggests that cannabis and cannabinoids have an analgesic effect that arises from a combination of compounds and various receptor systems. These effects may be maximized with the use of a combination of cannabinoids. At the same time, the combination of cannabinoids helps minimize the undesirable side effects of some cannabinoids such as the psychoactivity of THC. With these findings, further research is necessary to assess the analgesic properties of other cannabinoids like cannabichromene and cannabigerol and their contributions to the reduction of pain.”

https://pubmed.ncbi.nlm.nih.gov/40046175/

“Cannabis sativa L. has been used as a medicinal remedy for thousands of years. It has gone through multiple periods of acceptance, dismissal/rejection, reacceptance, illegality and, most recently, rediscovery of its potential to address chronic medical conditions. In the last few decades, its recreational use has received growing acceptance, while its medical use has been encouraged in multiple jurisdictions. Most modern research has focused on the phytocannabinoids produced by the plant which have been found to help minimize chronic neuropathic pain and mitigate other disorders including seizure conditions (e.g., Lennox-Gastaut and Dravet syndromes) and spasticity in MS. This review has provided scientific evidence supporting the use of cannabis as an adjuvant in the treatment of chronic pain which could also lead pain reduction to the point of minimizing other pharmacological treatments.”

https://karger.com/mca/article/8/1/31/920366/The-Pharmacology-of-Cannabinoids-in-Chronic-Pain

“Designer cannabinoids could be the key to pain relief without adverse effects”

https://www.nature.com/articles/d41586-025-00546-w

A within-subject, double-blind, placebo-controlled randomized evaluation of the combined effects of cannabidiol and hydromorphone in a human laboratory pain model

pubmed logo

“Preclinical and epidemiological evidence supports that cannabinoids may have opioid-sparing properties and could be one strategy to decrease opioid use and associated harms like overdose and extramedical use.

The objective of this within subjects, double-blind, double-dummy, randomized human laboratory trial was to examine whether cannabidiol (CBD) increases opioid analgesic effects and whether there are corresponding increases in other opioid mediated effects.

Healthy participants (N = 31) attended 5 outpatient sessions where they received the following drug conditions: (1) placebo + placebo, (2) 4 mg hydromorphone + placebo, (3) 4 mg hydromorphone + 50 mg CBD, (4) 4 mg hydromorphone + 100 mg CBD, and (5) 4 mg hydromorphone + 200 mg CBD. Before and at multiple time points after drug administration, participants completed (1) quantitative sensory testing, which induced and assessed acute and chronic laboratory models of pain; (2) standard assessments, which queried acute subjective drug effects; and (3) tasks, which assessed psychomotor performance.

When combined with a dose of hydromorphone that did not reliably produce analgesic effects on its own, CBD increased the analgesic effects for some laboratory acute pain outcomes but none of the laboratory chronic pain outcomes. At the highest dose of CBD (200 mg), there were concurrent increases in self-report Bad Effects and adverse effects that were not observed at lower doses of CBD (50 mg). Cannabidiol mitigated psychomotor impairment observed with hydromorphone alone.

These findings suggest that lower doses of CBD (50 mg) may have utility for enhancing acute analgesic properties of opioids without having corresponding increases in bad effects.”

https://pubmed.ncbi.nlm.nih.gov/40035623/

https://journals.lww.com/pain/abstract/9900/a_within_subject,_double_blind,_placebo_controlled.840.aspx