Hair Regrowth with Novel Hemp Extract: A Case Series

pubmed logo

“Introduction: The endocannabinoid system (ECS), discovered in the 1990s, is a system involved with maintaining cellular homeostasis by down-regulating the damaging inflammatory responses and upregulating regenerative processes. Cannabidiol (CBD), tetrahydrocannabivarin (THCV), and cannabidivarin (CBDV) are all phytocannabinoids found in varying quantities in hemp extract. These three cannabinoids have novel therapeutic effects on hair regrowth through the ECS. The method of action is different from and synergistic with current hair regrowth therapies. The three cannabinoids are fat-soluble and poorly absorbed past the epidermis, but topical application easily reaches hair follicles where they act as partial or full CB1 antagonist and agonist of transient receptor potential vanilloid-1 (TRPV1) and vanilloid receptor-4 (TRPV4). All these ECS receptors relate to hair follicle function. Blocking the CB1 receptor on the hair follicle has been shown to result in hair shaft elongation; in addition, the hair follicle cycle (anagen, catagen, and telogen phases) is controlled by TRPV1. The effects of CBD on hair growth are dose dependent and higher doses may result in premature entry into the catagen phase through a different receptor known as TRPV4. CBD has also been shown to increase Wnt signaling, which causes dermal progenitor cells to differentiate into new hair follicles and maintains anagen phase of the hair cycle.

Objective: This study was conducted on subjects with androgenetic alopecia (AGA), as follow-up to a prior published study using hemp extract high in CBD without CBDV or THCV. That study showed an average 93.5% increase in hair numbers after 6 months of use. This subsequent study is being done to determine if daily topical application of a hemp-oil high in CBD, THCV, and CBDV concentrations would result in improved hair regrowth in the area of the scalp most affected by AGA.

Materials and methods: A case series study was done of 31 (15 men and 16 women, 27 Caucasian, 2 Asian, and 1 mixed race) subjects with AGA. They used a once-daily topical hemp extract formulation, averaging about 33 mg/day for 6 months. A hair count of the greatest area of alopecia was carried out before treatment was started and again after 6 months of treatment. To facilitate consistent hair count analysis, a permanent tattoo was placed at the point for maximum hair loss on the scalp. The subjects were also asked to qualitatively rate their psychosocial perception of “scalp coverage” improvement after the study was completed. The qualitative scale included “very unhappy,” “unhappy,” “neutral,” “happy,” and “very happy.” The subjects were photographed in a standard manner before and after the study. The photographs were compared for improvements in “scalp coverage” by an independent physician. The qualitative scale included “none,” “mild,” “moderate,” and “extensive” improvement of scalp coverage.

Results: The results revealed that all subjects had some regrowth. This ranged from 31.25% (from 16 to 21 hairs) to 2000% (from 1 to 21 hairs). The average increase was statistically significant 246% (15.07 hairs/cm2 increase) in men and 127% (16.06 hairs/cm2) in women. There were no reported adverse effects. All subjects rated their psychosocial perception of the effects of the hair loss, as “happy” or “very happy.” Independent review of the photographs revealed evidence of “mild” to “extensive” scalp coverage improvements for all of the subjects.

Conclusion: Although the exact mechanism of therapeutic effects is not known, THCV and CBDV are most likely functioning as full CB1 receptor neutral antagonists and CBD is most likely functioning as a partial CB1 receptor antagonist and potentially through Wnt messaging. All three cannabinoids were functioning as TRPV1 agonists. The addition of menthol through the peppermint extract is probably acting through promoting a rapid onset of anagen phase. This topical hemp formulation was superior to oral finasteride, 5% minoxidil once daily foam and CBD topical extract alone. Since this hemp extract works through novel mechanisms entirely different from both finasteride and minoxidil, it can be used in conjunction with these current drugs and would be expected to have synergistic effects. However, safety and efficacy of this combination would be to be evaluated.”

https://pubmed.ncbi.nlm.nih.gov/37305187/

https://www.ijtrichology.com/article.asp?issn=0974-7753;year=2023;volume=15;issue=1;spage=18;epage=24;aulast=Smith

Comparative evaluation of ethyl acetate and n-Hexane extracts of Cannabis sativa L. leaves for muscle function restoration after peripheral nerve lesion

pubmed logo

“Peripheral nerve injuries are one of those complex medical conditions for which a highly effective first-line treatment is currently missing. The use of natural compound as medicines to treat various disorders has a long history. Our previous research explored that crude Cannabis sativa L. accelerated the recovery of sensorimotor functions following nerve injury. The purpose of the current study was to investigate the effects of n-Hexane and ethyl acetate extracts of C. sativa L. leaves on the muscle function restoration in a mouse model after sciatic nerve injury. For this purpose, albino mice (n = 18) were equally divided into control and two treatment groups. The control group was fed on a plain diet while treatment groups were given a diet having n-Hexane (treatment 1) and ethyl acetate (treatment 2) extracts of C. sativa L. (10 mg/kg body weight), respectively. The hot plate test (M = 15.61, SD = 2.61, p = .001), grip strength (M = 68.32, SD = 3.22, p < .001), and sciatic functional index (SFI) (M = 11.59, SD = 6.54, p = .012) assessment indicated significant amelioration in treatment 1 as compared to treatment 2 group. Furthermore, muscle fiber cross-sectional area revealed a noticeable improvement (M = 182,319, SD = 35.80, p = .013) in treatment 1 while muscle mass ratio of Gastrocnemius (M = 0.64, SD = 0.08, p = .427) and Tibialis anterior (M = 0.57, SD = 0.04, p = .209) indicated nonsignificant change. A prominent increase in total antioxidant capacity (TAC) (M = 3.76, SD = 0.38, p < .001) and momentous decrease in total oxidant status (TOS) (M = 11.28, SD = 5.71, p < .001) along with blood glucose level indicated significant difference (M = 105.5, SD = 9.12, p < 0.001) in treatment 1 group. These results suggest that treatment 1 has the ability to speed up functional recovery after a peripheral nerve lesion. Further research is necessary, nevertheless, to better understand the extract’s actual curative properties and the mechanisms that improve functional restoration.”

https://pubmed.ncbi.nlm.nih.gov/37324902/

“In a nutshell, the results of this investigation demonstrate that n-Hexane C. sativa L. leaves extract has the ability to hasten the recovery of functions following a compression damage to the sciatic nerve. Even though these results are very encouraging and validating our previously reported data, however, more in-depth research is advised to investigate the key participants in the supported recovery process. Future research on C. sativa L. may reveal it to be a cutting-edge medicinal agent for the regeneration of peripheral nerves in cases of traumatic injury.”

https://onlinelibrary.wiley.com/doi/10.1002/fsn3.3255

Cannabinoid Use in the Treatment of Laryngeal Dystonia and Vocal Tremor: A Pilot Investigation

pubmed logo

“Objectives/hypothesis: Laryngeal dystonia and vocal tremor can be debilitating conditions with suboptimal treatment options. Botulinum toxin chemodenervation is typically the first-line treatment and is considered the gold standard. However, patient response to botulinum toxin varies widely. There is anecdotal evidence for the use of cannabinoids in treating laryngeal dystonia with a scarcity of research investigating this potential treatment option. The primary objective of this study is to survey patients with laryngeal dystonia and vocal tremor to gauge how some people are using cannabinoids to treat their condition and to ascertain patient perceptions of cannabinoid effectiveness.

Study design: This is a cross-sectional survey study.

Methods: An eight-question anonymous survey was distributed to people with abductor spasmodic dysphonia adductor spasmodic dysphonia, vocal tremor, muscle tension dysphonia, and mixed laryngeal dystonia via the Dysphonia International (formerly National Spasmodic Dysphonia Association) email listserv.

Results: 158 responses: 25 males and 133 females, (mean [range] age, 64.9 [22-95] years). 53.8% of participants had tried cannabinoids for the purposes of treating their condition at some point, with 52.9% of this subset actively using cannabis as part of their treatment. Most participants who have used cannabinoids as a treatment rank their effectiveness as somewhat effective (42.4%) or ineffective (45.9%). Participants cited a reduction in voice strain and anxiety as reasons for cannabinoid effectiveness.

Conclusions: People with laryngeal dystonia and/or vocal tremor currently use or have tried using cannabinoids as a treatment for their condition. Cannabinoids were better received as a supplementary treatment than as a stand-alone treatment.”

https://pubmed.ncbi.nlm.nih.gov/37308367/

https://www.jvoice.org/article/S0892-1997(23)00158-3/fulltext

The Cannabis sativa genetics and therapeutics relationship network: automatically associating cannabis-related genes to therapeutic properties through chemicals from cannabis literature

pubmed logo

“Background: Understanding the genome of Cannabis sativa holds significant scientific value due to the multi-faceted therapeutic nature of the plant. Links from cannabis gene to therapeutic property are important to establish gene targets for the optimization of specific therapeutic properties through selective breeding of cannabis strains. Our work establishes a resource for quickly obtaining a complete set of therapeutic properties and genes associated with any known cannabis chemical constituent, as well as relevant literature.

Methods: State-of-the-art natural language processing (NLP) was used to automatically extract information from many cannabis-related publications, thus producing an undirected multipartite weighted-edge paragraph co-occurrence relationship network composed of two relationship types, gene-chemical and chemical property. We also developed an interactive application to visualize sub-graphs of manageable size.

Results: Two hundred thirty-four cannabis constituent chemicals, 352 therapeutic properties, and 124 genes from the Cannabis sativa genome form a multipartite network graph which transforms 29,817 cannabis-related research documents from PubMed Central into an easy to visualize and explore network format.

Conclusion: Use of our network replaces time-consuming and labor intensive manual extraction of information from the large amount of available cannabis literature. This streamlined information retrieval process will enhance the activities of cannabis breeders, cannabis researchers, organic biochemists, pharmaceutical researchers and scientists in many other disciplines.”

https://pubmed.ncbi.nlm.nih.gov/37254213/

https://jcannabisresearch.biomedcentral.com/articles/10.1186/s42238-023-00182-z

Cannabinoids as multifaceted compounds

Phytochemistry

“Since ancient times, Cannabis and its preparations have found various applications such as for medical, recreational and industrial purposes. Subsequently the 1930s, legislation in many countries has restricted its use due to its psychotropic properties. More recently, the discovery of endocannabinoid system, including new receptors, ligands, and mediators, its role in maintaining the homeostasis of the human body and the possible implication in various physiological and pathophysiological processes has also been understood. Based on this evidence, researchers were able to develop new therapeutic targets for the treatment of various pathological disorders. For this purpose, Cannabis and cannabinoids were subjected for the evaluation of their pharmacological activities. The renewed interest in the medical use of cannabis for its potential therapeutic application has prompted legislators to take action to regulate the safe use of cannabis and products containing cannabinoids. However, each country has an enormous heterogeneity in the regulation of laws. Here, we are pleased to show a general and prevailing overview of the findings regarding cannabinoids and the multiple research fields such as chemistry, phytochemistry, pharmacology and analytics in which they are involved.”

https://pubmed.ncbi.nlm.nih.gov/37196772/

https://www.sciencedirect.com/science/article/abs/pii/S0031942223001346?via%3Dihub

Cannabis Pharmacogenomics: A Path to Personalized Medicine

pubmed logo

“Cannabis and related compounds have created significant research interest as a promising therapy in many disorders. However, the individual therapeutic effects of cannabinoids and the incidence of side effects are still difficult to determine. Pharmacogenomics may provide the answers to many questions and concerns regarding the cannabis/cannabinoid treatment and help us to understand the variability in individual responses and associated risks. Pharmacogenomics research has made meaningful progress in identifying genetic variations that play a critical role in interpatient variability in response to cannabis. This review classifies the current knowledge of pharmacogenomics associated with medical marijuana and related compounds and can assist in improving the outcomes of cannabinoid therapy and to minimize the adverse effects of cannabis use. Specific examples of pharmacogenomics informing pharmacotherapy as a path to personalized medicine are discussed.”

https://pubmed.ncbi.nlm.nih.gov/37185752/

https://www.mdpi.com/1467-3045/45/4/228


Personalized medicine could transform healthcare”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5492710/

Cannabidiol alleviates right ventricular fibrosis by inhibiting the transforming growth factor β pathway in monocrotaline-induced pulmonary hypertension in rats

Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease

“Cannabidiol (CBD) is a non-intoxicating compound of Cannabis with anti-fibrotic properties. Pulmonary hypertension (PH) is a disease that can lead to right ventricular (RV) failure and premature death. There is evidence that CBD reduces monocrotaline (MCT)-induced PH, including reducing right ventricular systolic pressure (RVSP), vasorelaxant effect on pulmonary arteries, and decreasing expression of profibrotic markers in the lungs. The aim of our study was to investigate the effect of chronic administration of CBD (10 mg/kg daily for 21 days) on profibrotic parameters in the RVs of MCT-induced PH rats. In MCT-induced PH, we found an increase in profibrotic parameters and parameters related to RV dysfunction, i.e. plasma pro-B-type natriuretic peptide (NT-proBNP), cardiomyocyte width, interstitial and perivascular fibrosis area, amount of fibroblasts and fibronectin, as well as overexpression of the transforming growth of factor β1 (TGF-β1), galectin-3 (Gal-3), suppressor of mothers against decapentaplegic 2 (SMAD2), phosphorylated SMAD2 (pSMAD2) and alpha-smooth muscle actin (α-SMA). In contrast, vascular endothelial cadherin (VE-cadherin) levels were decreased in the RVs of MCT-induced PH rats. Administration of CBD reduced the amount of plasma NT-proBNP, the width of cardiomyocytes, the amount of fibrosis area, fibronectin and fibroblast expression, as well as decreased the expression of TGF-β1, Gal-3, SMAD2, pSMAD2, and increased the level of VE-cadherin. Overall, CBD has been found to have the anti-fibrotic potential in MCT-induced PH. As such, CBD may act as an adjuvant therapy for PH, however, further detailed investigations are recommended to confirm our promising results.”

https://pubmed.ncbi.nlm.nih.gov/37187449/

“CBD may be used in the future as add-on therapy in the treatment of PH.”

https://www.sciencedirect.com/science/article/abs/pii/S0925443923001199?via%3Dihub

Cannabidiol inhibits neuroinflammatory responses and circuit-associated synaptic loss following damage to a songbird vocal pre-motor cortical-like region

pubmed logo

“The non-euphorigenic phytocannabinoid cannabidiol (CBD) has been used successfully to treat childhood-onset epilepsies. These conditions are associated with developmental delays that often include vocal learning. Zebra finch song, like language, is a complex behavior learned during a sensitive period of development. Song quality is maintained through continuous sensorimotor refinement involving circuits that control learning and production. Within the vocal motor circuit, HVC is a cortical-like region that when partially lesioned temporarily disrupts song structure. We previously found CBD (10 mg/kg/day) improves post-lesion vocal recovery. The present studies were done to begin to understand mechanisms possibly responsible for CBD vocal protection. We found CBD markedly reduced expression of inflammatory mediators and oxidative stress markers. These effects were associated with regionally-reduced expression of the microglial marker TMEM119. As microglia are key regulators of synaptic reorganization, we measured synapse densities, finding significant lesion-induced circuit-wide decreases that were largely reversed by CBD. Synaptic protection was accompanied by NRF2 activation and BDNF/ARC/ARG3.1/MSK1 expression implicating mechanisms important to song circuit node mitigation of oxidative stress and promotion of synaptic homeostasis. Our findings demonstrate that CBD promotes an array of neuroprotective processes consistent with modulation of multiple cell signaling systems, and suggest these mechanisms are important to post-lesion recovery of a complex learned behavior.”

https://pubmed.ncbi.nlm.nih.gov/37193782/

“Taken together, our results demonstrate powerful anti-inflammatory and synaptoprotective mechanisms of CBD action following damage to a pre-motor cortical-like region. This efficacy is associated with promotion of multiple homeostasis-related mechanisms within song circuits. Future studies may link these effects with previously-demonstrated learning-dependent vocal recovery.”

https://www.nature.com/articles/s41598-023-34924-z

Study of Cannabis Oils Obtained from Three Varieties of C. sativa and by Two Different Extraction Methods: Phytochemical Characterization and Biological Activities

plants-logo

“Currently, much effort is being placed into obtaining extracts and/or essential oils from Cannabis sativa L. for specific therapeutic purposes or pharmacological compositions. These potential applications depend mainly on the phytochemical composition of the oils, which in turn are determined by the type of C. sativa and the extraction method used to obtain the oils.

In this work, we have evaluated the contents of secondary metabolites, delta-9-tetrahydrocannabinol (THC), and cannabidiol (CBD), in addition to the total phenolic, flavonoids, and anthraquinone content in oils obtained using solid-liquid extraction (SLE) and supercritical fluid extraction (SCF). Different varieties of C. sativa were chosen by using the ratio of THC to CBD concentrations. Additionally, antioxidant, antifungal and anticancer activities on different cancer cell lines were evaluated in vitro.

The results indicate that oils extracted by SLE, with high contents of CBD, flavonoids, and phenolic compounds, exhibit a high antioxidant capacity and induce a high decrease in the cell viability of the tested breast cancer cell line (MCF-7). The observed biological activities are attributed to the entourage effect, in which CBD, phenols and flavonoids play a key role. Therefore, it is concluded that the right selection of C. sativa variety and the solvent for SLE extraction method could be used to obtain the optimal oil composition to develop a natural anticancer agent.”

https://pubmed.ncbi.nlm.nih.gov/37176831/

“Different varieties of C. sativa identified by the ratio of THC:CBD were used to extract cannabis oil using two extraction methods. The evaluation of the biological activities of the oils indicates that they are mostly determined by their chemical composition. For example, all Cannabis oils exhibit an antioxidant capacity and antiproliferative effects on tested cancer cell lines. In both types of experiments, the most active Cannabis oil tested was M4, suggesting a direct relationship between its antioxidant capacity and cancer cell cytotoxicity. In addition, M4 exhibits a high selectivity against breast cancer cell lines, and, therefore, Cannabis oils can be considered potential anticancer agents.”

https://www.mdpi.com/2223-7747/12/9/1772

Goods and bads of endocannabinoid system as a therapeutic target: Lessons learned after 30 years

Pharmacological Reviews: 75 (3)

“The cannabis derivative marijuana is the most widely used recreational drug in the Western world, that is consumed by an estimated 83 million individuals (~3% of the world population). In recent years, there has been a marked transformation in society regarding the risk perception of cannabis, driven by its legalization and medical use in many states in the USA and worldwide.

Compelling research evidence and the FDA cannabis-derived cannabidiol approval for severe childhood epilepsy have confirmed the large therapeutic potential of cannabidiol itself, Δ9-tetrahydrocannabinol (THC) and other plant-derived cannabinoids (phytocannabinoids). Of note, our body has a complex endocannabinoid system (ECS) – made of receptors, metabolic enzymes and transporters – that is also regulated by phytocannabinoids.

The first endocannabinoid to be discovered 30 years ago was anandamide (N-arachidonoyl-ethanolamine); since then, distinct elements of ECS have been the target of drug design programs aimed at curing (or at least slowing down) a number of human diseases, both in the central nervous system and at the periphery. Here, a critical review of our knowledge of the goods and bads of ECS as a therapeutic target are presented, in order to define the benefits of ECS-active phytocannabinoids and ECS-oriented synthetic drugs for human health.

Significance Statement The endocannabinoid system plays important roles everywhere in our body and is either involved in mediating key processes of central and peripheral diseases or represents a therapeutic target for treatment. Understanding structure, function, and pharmacology of the components of this complex system, and in particular of key receptors (like CB1R and CB2R) and metabolic enzymes (like FAAH and MAGL), will advance our understanding of endocannabinoid signaling and activity at molecular, cellular, and system levels providing new opportunities to treat patients.”

https://pubmed.ncbi.nlm.nih.gov/37164640/

https://pharmrev.aspetjournals.org/content/early/2023/05/09/pharmrev.122.000600