Acute and Subchronic Exposure to Hemp (Cannabis sativa L.) Leaf Oil: Impacts on Vital Organs in Sprague-Dawley Rats

pubmed logo

“Background/Objectives: Hemp (Cannabis sativa L. subsp. sativa) is a plant within the Cannabis sativa species and utilized for several applications, including antioxidation, antihypertension, and anti-inflammation. To our knowledge, no prior study has assessed the acute and sub-chronic oral safety of hemp leaf oil in Sprague-Dawley rats under Thailand-compliant THC levels. This study investigates the acute and sub-chronic effects of Hemp leaf oil (HLO) on the heart, liver, and kidneys of male and female Sprague-Dawley rats. 

Methods: Six-week-old male and female Sprague-Dawley rats were administered HLO (1.5 mL/kg) intragastrically, either as a single dose or a repeat dose over 28 days. 

Results: No changes in body or organ weights were observed following acute and sub-chronic HLO administration in sex-matched groups. Moreover, blood pressure and heart rate remained comparable across groups after acute and sub-chronic HLO treatment. Both acute and sub-chronic administration of HLO did not influence electrolyte balance, liver enzymes, total protein, albumin, blood urea nitrogen, or creatinine levels. Hematoxylin and eosin staining revealed the normal morphology of the heart, liver, and kidneys in rats subjected to HLO, during both acute and sub-chronic treatment. 

Conclusions: In conclusion, our data suggested that both acute and sub-chronic administration of HLO at 1.5 mL/kg could be safe for the vital organs. These findings support the potential use of HLO in therapeutic applications, particularly in scenarios when the safety of essential organs is at stake.”

https://pubmed.ncbi.nlm.nih.gov/41155551/

“These results support the safety effect of HLO treatment and the prospective application of HLO in preclinical research or clinical settings. This safety profile supports the extension of research into many domains, including dose-escalation studies and extended chronic toxicity assessments. This will strengthen the evidence base for any future clinical development of HLO.”

https://www.mdpi.com/1424-8247/18/10/1437

Long-Term Efficacy and Safety of Inhaled Cannabis Therapy for Painful Diabetic Neuropathy: A 5-Year Longitudinal Observational Study

pubmed logo

“Background/Objectives: Diabetic neuropathy (DN) is a prevalent complication of diabetes mellitus, affecting up to 50% of long-term patients and causing significant pain, reduced quality of life, and healthcare burden. Conventional treatments, including anticonvulsants, antidepressants, and opioids, offer limited efficacy and are associated with adverse effects. Emerging evidence suggests that cannabis, acting via the endocannabinoid system, may provide analgesic and neuroprotective benefits. This study evaluates the long-term effects of inhaled cannabis as adjunctive therapy for refractory painful DN. Inhaled cannabis exhibits rapid onset pharmacokinetics (within minutes, lasting 2-4 h) due to pulmonary absorption, targeting CB1 and CB2 receptors to modulate pain and inflammation. 

Methods: In this prospective, observational study, 52 patients with confirmed painful DN, unresponsive to at least three prior analgesics plus non-pharmacological interventions, were recruited from a single clinic. Following a 1-month washout, patients initiated inhaled medical-grade cannabis (20% THC, <1% CBD), titrated individually. Assessments occurred at baseline and annually for 5 years, including the Brief Pain Inventory (BPI) for pain severity and interference; the degree of pain relief; Leeds Assessment of Neuropathic Symptoms and Signs (LANSS) score; HbA1c; and medication usage. Statistical analyses used repeated-measures ANOVA, Kruskal-Wallis tests, Welch’s t-tests, and Pearson’s correlations via Analyze-it for Excel. 

Results: Of 52 patients (mean age 45.3 ± 17.8 years; 71.2% male; diabetes duration 23.3 ± 17.8 years), 50 completed follow-up visits. Significant reductions occurred in BPI pain severity (9.0 ± 0.8 to 2.0 ± 0.7, p < 0.001), interference (7.5 ± 1.7 to 2.2 ± 0.9, p < 0.001), LANSS score (19.4 ± 3.8 to 10.2 ± 6.4, p < 0.001), and HbA1c (9.77% ± 1.50 to 7.79% ± 1.51, p < 0.001). Analgesic use decreased markedly (e.g., morphine equivalents: 66.8 ± 49.2 mg to 4.5 ± 9.6 mg). Cannabis dose correlated positively with pain relief (r = 0.74, p < 0.001) and negatively with narcotic use (r = -0.43, p < 0.001) and pain interference (r = -0.43, p < 0.001). No serious adverse events were reported; mild side effects (e.g., dry mouth or euphoria) occurred in 15.4% of patients. 

Conclusions: Inhaled cannabis showed sustained pain relief, improved glycemic control, and opioid-sparing effects in refractory DN over 5 years, with a favorable safety profile. These findings are associative due to the observational design, and randomized controlled trials (RCTs) are needed to confirm efficacy and determine optimal usage, addressing limitations such as single-center bias and small sample size (n = 52). Future studies incorporating biomarker analysis (e.g., endocannabinoid levels) could elucidate mechanisms and enhance precision in cannabis therapy.”

https://pubmed.ncbi.nlm.nih.gov/41153689/

“Inhaled cannabis add-on therapy mitigated symptoms of diabetic neuropathy over the course of a five-year observation period. Some reduction in glycosylated hemoglobin is observed as well as major reduction in the need for other prescription medications, including opiates and opioids. It is possible to state the following: (1). Inhaled cannabis significantly reduced pain and neuropathic symptoms over 5 years. (2). It decreased opioid use, supporting an opioid-sparing effect. (3). HbA1c improvements suggest a metabolic benefit, though causality is unproven. (4). No serious adverse events occurred, with mild effects in 15.4% of patients. (5). RCTs are needed to confirm efficacy and address accessibility barriers. Integration of objective pain assessment tools, such as salivary biomarker devices, could enhance the precision and reproducibility of cannabis therapy outcomes in DN.”

https://www.mdpi.com/2227-9059/13/10/2406

Effects of Medical Cannabis Treatment for Autistic Children on Family Accommodation: An Open-Label Mixed-Methods Study

pubmed logo

“Background/objectives: Parents of autistic children often face behavioral and participation challenges of their children, leading them to make accommodations to maintain a stable daily family routine. These family accommodations (FA) involve adapting family routines, actively engaging with the child’s support needs and symptoms, and avoiding specific situations.

Methods: This open-label, mixed-methods study investigated the impact of CBD-rich cannabis treatment on FA. In the quantitative phase, analyses included 44 parents (from 87 initially recruited) who had complete FAS-RRB data at baseline, 3 months, and 6 months. In the following qualitative phase, 15 parents from the full sample participated in semi-structured interviews.

Results: Quantitative results showed reductions in FA frequency and parental distress at 3 and 6 months. Qualitative findings revealed positive changes in family routines, enhanced well-being, and improved parental engagement in meaningful activities and social interactions.

Conclusions: This study provides preliminary evidence that CBD-rich cannabis treatment may reduce family accommodation (FA) and parental distress, while improving family routines and well-being. However, given the open-label design and observed adverse events and withdrawals, the findings should be interpreted with caution.”

https://pubmed.ncbi.nlm.nih.gov/41153555/

https://www.mdpi.com/2227-9067/12/10/1373

“Highlights

  • CBD-rich cannabis treatment over 6 months was associated with reduced family accommodation (FA) and parental distress in families of autistic children.
  • Qualitative findings showed improved family routines, parental well-being, and greater engagement in meaningful activities and social interactions.

What are the main findings?

Implications

  • CBD-rich cannabis treatment may reduce FA and parental distress, while improving family routines and well-being.
  • These results provide preliminary support for CBD-rich cannabis treatment in autistic children, though further controlled studies are needed.”

Unlike Tobacco Users, Documented Cannabis Users Are Not at an Increased Risk of Adverse Events After Total Hip Arthroplasty

pubmed logo

“Background: Perioperative tobacco use has been identified as an independent risk factor for adverse events after total hip arthroplasty (THA). It is unknown if perioperative cannabis users share similar levels of risk for adverse events after THA.

Methods: Patients undergoing THA were identified from the 2010 to 2021 PearlDiver M151 administrative data set. Patient subcohorts were categorized based on presence or absence of cannabis and/or tobacco use, as determined by coding. These subcohorts were equally matched based on patient age, sex, and Elixhauser Comorbidity Index scores to form groups of nonusers, tobacco users, tobacco and cannabis users, as well as cannabis users. The incidences of adverse events within 90 days postoperatively were obtained and compared using univariate and multivariate analyses that controlled for age, sex, and Elixhauser Comorbidity Index. Bonferroni correction was applied.

Results: Of 494,431 THA patients, nonusers were 442,000 (89.40%), tobacco users 46,925 (9.50%), tobacco and cannabis users 3,390 (0.69%), and cannabis users 2,116 (0.43%). After matching, there were 1,897 in each group. By multivariate analyses, tobacco-only users were at significantly greater risk of severe adverse events, sepsis, and pneumonia (P < 0.001 for each). Tobacco and cannabis users were at significantly greater risk of severe adverse events, myocardial infarction, pneumonia, and readmission (P < 0.001 for each). Conversely, cannabis-only users were not at significantly greater risk for any of the combined or individual adverse events assessed.

Discussion: This study confirmed that THA patients with tobacco-only use were at greater risk of perioperative adverse events and that these were relatively similar to those with concurrent tobacco and cannabis use. However, cannabis-only users were not at greater risk, a finding that is of clinical interest given the evolving access and increasing use of this agent.”

https://pubmed.ncbi.nlm.nih.gov/41144882/

https://journals.lww.com/jaaos/abstract/9900/unlike_tobacco_users,_documented_cannabis_users.1503.aspx

Exploring Cannabidiol’s Role in Regenerative Medicine: Focus on Neural and Skeletal Tissues

pubmed logo

“Cannabidiol (CBD) is a non-psychotropic compound found in plants of the Cannabis genus, extensively studied for its therapeutic potential. Research has shown that CBD possesses anti-inflammatory, antioxidant, and regenerative properties, and may contribute to the recovery of neural and bone tissues.

In light of the aging population and the resulting rise in neurodegenerative and osteodegenerative conditions, exploring novel therapeutic strategies that promote cellular regeneration is increasingly important.

This review aims to compile and critically analyze key studies published in recent decades regarding the effects of CBD on the regeneration of the central and peripheral nervous systems, as well as bone tissue.

Findings from in vivo studies indicate that CBD can attenuate inflammatory responses, inhibit oxidative stress, and modulate cellular pathways involved in tissue repair, thereby supporting neuronal and bone regeneration. Moreover, evidence suggests that CBD may protect cells from structural damage, enhancing the functional recovery of affected tissues.

Despite scientific advances highlighting cannabidiol as a promising agent for bone and nerve regeneration, its therapeutic application still faces significant limitations. The primary challenge lies in the lack of robust clinical trials in humans, as most existing evidence is derived from in vitro and in vivo studies, making it difficult to confirm its efficacy and safety in clinical contexts. Additionally, CBD’s low bioavailability-due to first-pass hepatic metabolism-hinders dose standardization and reduces the predictability of therapeutic outcomes.

Compounding these issues are regulatory constraints and the persistent social stigma surrounding cannabis-derived compounds, which further impede their integration and acceptance in regenerative medicine. Therefore, future research is essential to validate the therapeutic benefits of CBD and to establish its clinical applicability in treating neurological and bone disorders.”

https://pubmed.ncbi.nlm.nih.gov/41153773/

“Collectively, these effects underscore the potential of CBD as a regenerative agent in pathological conditions related to aging, trauma, and neurodegenerative or musculoskeletal disorders. This review offers a comprehensive synthesis of current findings, emphasizing the innovative potential of cannabidiol (CBD) as a minimally invasive and multifunctional therapeutic strategy for the regeneration of nerve and bone tissues.”

https://www.mdpi.com/2227-9059/13/10/2490

Novel Multifunctional Cannabidiol-Based Analogues with In Silico, In Vitro, and In Vivo Anti-SARS-CoV-2 Effect

pubmed logo

“Background/Objectives: COVID-19 was responsible for millions of deaths worldwide. This study aimed to identify substances with in vitro and in vivo effects against the SARS-CoV-2 virus. 

Methods: Compounds PQM-243 and PQM-249, two terpene-N-acyl-aryl-hydrazone analogues, were evaluated in vitro against SARS-CoV-2 to a antiviral activity and inhibitory effect against angiotensin converting enzyme 2 (ACE2). A possible inhibitory effect affecting the interaction between the receptor-binding domain (RBD) protein and/or ACE2 was evaluated using LUMMIT kit. A SARS-CoV-2-induced pulmonary pneumonia model was developed to evaluate the effects of the compounds after 3 days of treatment. 

Results: Compounds PQM-243 and PQM-249 exhibited IC50 values of 0.0648 ± 0.041 µM and 0.2860 ± 0.057 µM against SARS-CoV-2 with a selective index of >1543.21 and 349.65, respectively, and IC50 values of 12.1 nM and 13.3 nM, respectively, against ACE2. All concentrations used significantly reduced interactions between ACE2 and RBD. Computational studies suggest that these new compounds are potent direct anti-SARS-CoV-2 agents, capable of reducing both virus viability and its invasive ability in the host cells by reducing the interaction between RBD and ACE2. It was also demonstrated that even when administered by the oral route, both compounds reduced SARS-CoV-2-induced lung inflammation. Our data suggests that both compounds can act as potent direct anti-SARS-CoV-2 agents, reducing both viral viability and host cell entry. In addition, they exhibited a significant multi-target-directed pharmacological profile, also reducing SARS-CoV-2-induced lung inflammation when administered orally. 

Conclusions: Overall, these findings support further investigation of PQM-243 and PQM-249 as promising antiviral and anti-inflammatory multi-target prototypes for the development of innovative drug candidates targeting SARS-CoV-2 and other virus-related respiratory diseases.”

https://pubmed.ncbi.nlm.nih.gov/41155678/

“Taken together, our data suggests that PQM-243 and PQM-249—two newly synthesized, easily accessible, and structurally simplified CBD-based compounds—can act as potent direct anti-SARS-CoV-2 agents, capable of reducing both viral viability and host cell entry by inhibiting the interaction between the viral receptor-binding domain (RBD) and the ACE2 receptor. Notably, both compounds exhibited a significant multi-target-directed pharmacological profile, demonstrating not only virucidal activity but also the ability to reduce SARS-CoV-2-induced lung inflammation when administered orally.”

https://www.mdpi.com/1424-8247/18/10/1565

Cannabinoids in immune system-related diseases: From bench to clinic

pubmed logo

“As a psychoactive drug, marijuana is used for recreational purposes. Given its addictive nature and the serious damage it causes to both individual health and social stability, marijuana has been banned in most countries worldwide. In recent years, with the continuous improvement of basic research, researchers have discovered the vital role of cannabinoids, the primary active ingredient in marijuana, in multiple human systems.

Research found that cannabinoids play roles in regulating immune system function and have therapeutic potential in immune system-related diseases.

However, the use of cannabinoids still poses certain hazards. For instance, the abuse of cannabinoids by pregnant women can exert certain impacts on fetal nervous system development; cannabinoids use can lead to adverse reactions such as dizziness, nausea, and dry mouth. Moreover, there are still numerous contradictions in current research on the effects of cannabinoids, and the mechanisms by which cannabinoids exert protective effects in certain diseases remain unelucidated.

In this review, we systematically discuss the endocannabinoid system and summarize the molecular and cellular bases of cannabinoid function in the immune system, and elucidate the effects of cannabinoids on immune system-related diseases.”

https://pubmed.ncbi.nlm.nih.gov/41146433/

“These findings collectively demonstrate the protective roles of CB1 agonists in immune system-related diseases.”

“These findings underscore the broad therapeutic efficacy of CB2 agonists in immune system-related diseases.”

“Cannabinoids exert immunoregulatory effects by inducing the apoptosis of immune cells, inhibiting immune cell proliferation, suppressing the production of proinflammatory cytokines, and regulating the functions of immune cells such as B cells, NK cells, and Treg cells.”

https://journals.lww.com/cmj/fulltext/9900/cannabinoids_in_immune_system_related_diseases_.1774.aspx

Cannabidivarin directly targets the immunosuppressive activity of regulatory myeloid cells in tumors

pubmed logo

“Immunosuppression within the tumor microenvironment (TME) is a major obstacle for effective cancer immunotherapy. This is largely driven by myeloid suppressor cells, specifically Myeloid-Derived Suppressor Cells (MDSCs) and Tumor-Associated Macrophages (TAMs), which create an environment that inhibits the immune response. The presence of these cells is strongly correlated with poor patient outcomes and resistance to treatment, highlighting the need for new strategies to mitigate their effects.

In this study, we investigated the therapeutic potential of Cannabidivarin (CBDV), a less-studied non-psychoactive cannabinoid, to reprogram these immunosuppressive cells.

We found that CBDV directly targets myeloid suppressor cells, significantly impairing their immunosuppressive function both in vitro and in vivo. Mechanistically, CBDV reduces the key immunosuppressive markers inducible, Nitric Oxide Synthase (iNOS) and Arginase-1 (Arg-1) in murine MDSCs and promotes the differentiation of TAMs into M1-like macrophages.

This shift in myeloid cell function leads to restored CD8 + T-cell proliferation and activation. Furthermore, our results show that CBDV treatment in tumor-bearing mice reduces tumor progression and improves the anti-tumor immune response within the TME. We also confirmed the clinical relevance of our findings, demonstrating that CBDV effectively reduces the immunosuppressive phenotype of human-derived myeloid cells.

Altogether, these results establish CBDV as a new immunotherapeutic agent that directly neutralizes myeloid suppressor cells, thereby enhancing the immune system’s response against cancer.”

https://pubmed.ncbi.nlm.nih.gov/41151304/

“Our findings showcase the vast potential of CBDV in improving the success rate of cancer treatment.”

https://www.sciencedirect.com/science/article/pii/S0753332225008911?via%3Dihub

Cannabigerol Modulates Cannabinoid Receptor Type 2 Expression in the Spinal Dorsal Horn and Attenuates Neuropathic Pain Models

pubmed logo

“Background/Objectives: The expanding focus on novel therapeutic pathways for long-term pain relief has directed interest toward compounds obtained from Cannabis sativa. This study evaluated the antinociceptive potential of cannabigerol-enriched extract (CBG) in models of acute and chronic hypernociception, along with morphological outcomes. 

Methods: Formalin and hot plate tests were used on male Swiss mice to assess acute oral antinociception. To the chronic pain model, 8-week-old male Wistar rats underwent spinal nerve ligation (SNL), and CBG was administered orally by gavage once daily for 14 days. 

Results: CBG reduced nociceptive responses in the formalin test and hot plate tests, mainly at a dose of 30 mg/kg, showing antinociceptive activity. CBG attenuated SNL-induced thermal and mechanical hypersensitivity, accompanied by reduced microglial density and spinal morphological changes. Importantly, cannabinoid receptor type 2 (CB2R) signaling contributed to the antinociceptive effects of orally administered CBG, whereas cannabinoid receptor type 1 (CB1R), Brain-Derived Neurotrophic Factor (BDNF), and Tumor Necrosis Factor (TNF) did not appear to play major roles under our experimental conditions. 

Conclusions: Collectively, these findings support CBG as a promising alternative for chronic pain management.”

https://pubmed.ncbi.nlm.nih.gov/41155621/

“In summary, our study provides robust evidence that CBG exerts potent antinociceptive effects across acute, inflammatory, and neuropathic pain models.

Collectively, these results highlight CBG as a promising candidate for pain management and support further translational studies.”

https://www.mdpi.com/1424-8247/18/10/1508

Evaluation of the Effects of Tetrahydrocannabinol (THC) and Cannabidiol (CBD) on Gingival and Skin Keratinocyte Growth, Migration, Metabolic Activity, and Pro-Inflammatory Cytokine Secretion

pubmed logo

“Background: Cannabinoids, such as tetrahydrocannabinol (∆-9-THC) and cannabidiol (CBD) have been proposed for topical medicinal use as a treatment for tissue inflammation. In this context, keratinocytes are the first cells that encounter cannabinoids. The present study evaluated the dose-response relationship between different concentrations of THC and CBD and their effects on human skin and gingival keratinocyte growth and migration, to identify suitable non-toxic concentrations of cannabinoids. 

Methods: Human gingival and skin keratinocytes were exposed to CBD or THC at different concentrations for 24 h, and then cell adhesion, morphology, and growth/viability were assessed. The effects of cannabinoids on keratinocyte migration were evaluated at 6, 12, and 24 h. Cytotoxicity of CBD and THC against keratinocyte cells was assessed using an LHD cytotoxicity test. Cell metabolic profiles were evaluated using Mito and Glyco Stress Assays. The anti-inflammatory effects of cannabis derivatives were assessed against LPS-stimulated keratinocytes. Data analysis was performed by one-way ANOVA. 

Results: Only high concentrations (10 and 20 μg/mL) of CBD and THC were cytotoxic to gingival and skin keratinocytes, reduced cell adhesion and growth, and were associated with a delay in cell migration after wounding. Cells exposed to high concentrations (20 μg/mL) of cannabinoids displayed high levels of lactate dehydrogenase (LDH) activity and changes in mitochondrial activities. CBD induced a metabolic shift in skin keratinocyte cells toward glycolysis, while reducing mitochondrial oxidative phosphorylation. In contrast, THC did not alter the metabolic profile of skin keratinocytes. Interestingly, both CBD and THC significantly reduced the LPS-induced inflammatory response by decreasing secretion of IL-6 and IL-8 by gingival and skin keratinocytes. 

Conclusions: Gingival and skin keratinocytes interact differently with cannabinoids. Only high concentrations of cannabinoids were cytotoxic, suggesting that the use of low concentrations of CBD and THC for topical medicinal applications may help control tissue inflammation.”

https://pubmed.ncbi.nlm.nih.gov/41153821/

“Overall, results from this study suggest that CBD and THC may be used in different formulations (e.g., as a moisturizing lotion or spray) in order to manage tissue inflammation caused by pathological conditions, such as lichen planus, dermatitis, and psoriasis.”

https://www.mdpi.com/2227-9059/13/10/2541