Medicinal cannabis in the management of anxiety disorders: A systematic review

pubmed logo

“Background: With rising anxiety disorder diagnoses, many individuals are seeking alternatives to standard pharmacotherapies, like medicinal cannabis. This systematic review focuses exclusively on anxiety-related disorders and examines a wide range of cannabis-based preparations and interventions.

Method: We searched MEDLINE, EMBASE, CINAHL, and PsycInfo (October-December 2023) for peer-reviewed empirical studies, excluding case series, case studies, and review papers. Inclusion criteria were studies on adults (18+ years) diagnosed with anxiety-related disorders, examining the efficacy or effectiveness of medicinal cannabis. Studies on recreational cannabis or cannabis-use-disorder were excluded. The MASTER and QualSyst tools were used to assess bias.

Results: Fifty-seven studies met the inclusion criteria: 40 % cohort (n = 23), 30 % randomised controlled trials (n = 17), 18 % cross-sectional (n = 10), 12 % qualitative or other designs (n = 7). The MASTER scale revealed a high risk of bias, with a mean score of 62.9 (out of 100) due to inadequate reporting. Among the 13 highest-quality studies, 70 % (n = 9) reported a positive improvement for disorders including generalised anxiety disorder (GAD), social anxiety disorder (SAD), and post-traumatic stress disorder (PTSD). 30 % (n = 4) reported a negative result for conditions like obsessive-compulsive disorder, trichotillomania, test anxiety and SAD. Over 90 % of all studies, including lower quality studies, reported positive outcomes for CBD and THC-based cannabis. However, 53 % (n = 30) either omitted, or included self-reported data on either form and/or dosage.

Conclusion: Medicinal cannabis demonstrates potential in reducing anxiety symptoms, but the long-term benefits and overall impact on quality of life remain unclear. Further high-quality, longitudinal research with standardised dosing is needed.”

https://pubmed.ncbi.nlm.nih.gov/40413923/

“Across a range of anxiety-related disorders, most high-quality studies found that medicinal cannabis reduced anxiety symptoms in individuals with GAD, PTSD and SAD.”

https://www.sciencedirect.com/science/article/pii/S0165178125002008?via%3Dihub

Role of Endocannabinoids in Glaucoma: A Review

pubmed logo

“Aims: A review of the published literature was done to understand the role of endocannabinoids in glaucoma.

Background: As evidence mounts that intraocular pressure (IOP) is not the only factor in the pathogenesis and progression of glaucoma, a look into other aspects is the need of the hour. From the first instance of a drop in IOP linked to marijuana in the 1970s to the present, research has been ongoing, mostly in animals and in vitro models, with a scarcity of human studies, to delve into the world of the endocannabinoid system (ECS).

Methods: PubMed, ScienceDirect, and Google Scholar were searched for studies relating to endocannabinoids and their role in glaucoma.

Results: The ECS comprises ligands, receptors, and the synthesizing and degrading enzymes and is ubiquitous throughout the human body, including the visual system, from the eye to the occipital lobe. Apart from the IOP-lowering effect of the system, another property being investigated and implicated as an attribute of its receptors is neuroprotection. This neuroprotection seems to be mediated by excitotoxicity reduction and changes in vascular tone by acting on cannabinoid receptors.

Conclusion: The possibilities are indeed immense, and further research into the complex relationship between ECS and glaucoma is imperative to enable us to develop therapies for this otherwise chronic, progressive neuropathy, where the only armament in our hands is early diagnosis and maintenance therapy.

Clinical significance: We still do not have drugs for the prevention of retinal ganglion cell loss and for neuroprotection in glaucoma. Drugs that target cannabinoid receptors can revolutionize glaucoma management owing to their IOP-lowering action and neuroprotective effects. Based on the findings, we argue that further studies on the ECS and its implications in glaucoma are warranted to develop newer, effective, and better-targeted treatment strategies.”

https://pubmed.ncbi.nlm.nih.gov/40417140/

“Currently, no drugs can target the loss of RGCs in glaucoma.
Therefore, drugs that can target CB1 receptors can change the
course of glaucoma treatment, as they can exert hypotensive
and neuroprotective effects in conjunction.”

https://www.jocgp.com/doi/pdf/10.5005/jp-journals-10078-1467

Cannabis- and HIV-related perturbations to the cortical gamma dynamics supporting inhibitory processing

pubmed logo

“The main psychoactive component in cannabis-Δ9-tetrahydrocannabinol-is known to have anti-inflammatory properties and to alter gamma oscillations, pointing to its potential as a therapeutic agent for people with HIV (PWH). However, it remains unknown how cannabis use among PWH interacts with the neural circuitry underlying inhibitory processing.

Herein, using a cross-sectional study design, we collected data from 108 cannabis users and non-users with and without HIV. Participants were interviewed regarding their substance use history and completed a paired-pulse somatosensory stimulation paradigm during magnetoencephalography (MEG). MEG data were imaged using a beamformer and peak voxel time series data were extracted to examine neural oscillations in response to the stimulation and the strength of spontaneous activity in the same tissue during the baseline period. Across all participants, we observed robust gamma oscillations following stimulation in the left primary somatosensory cortices, with responses to the second stimulation being strongly attenuated relative to the first, thus demonstrating somatosensory gating.

PWH who used cannabis exhibited stronger oscillatory gamma activity compared with non-users with HIV, while the latter group also exhibited elevated spontaneous gamma activity relative to all other groups. Finally, we found that a longer duration of time since HIV diagnosis was associated with less efficient inhibitory processing among PWH who did not use cannabis, but not among PWH who regularly use cannabis.

These findings provide new evidence that cannabis use may mitigate the harmful effects of HIV on oscillatory and spontaneous gamma activity serving inhibitory processing.”

https://pubmed.ncbi.nlm.nih.gov/40421314/

“Taken together, these findings suggest that regular cannabis use may have a neuroprotective effect on inhibitory processing in PWH by normalising spontaneous gamma activity and enhancing gamma oscillatory responses during sensory gating. This pattern indicates that cannabis use could potentially mitigate some of the neural disruptions associated with HIV, highlighting a promising target for future interventions aimed at preserving cognitive function in this population. Importantly, the capacity of cannabis to influence gamma dynamics underscores the broader role of the endocannabinoid system in shaping neural function in the context of HIV-related neuropathology.”

https://academic.oup.com/braincomms/article/7/3/fcaf190/8132827?login=false

Effects of combined CBGA and cannabis-derived terpene nanoformulations on TRPV1 activation: Implications for enhanced pain management

pubmed logo

“Cannabinoids and terpenes, key bioactive components of cannabis, are increasingly studied for their individual and combined contributions to the therapeutic potential of cannabis-based treatments, with ongoing research exploring their distinct and interactive effects.

This study aimed to encapsulate cannabigerolic acid (CBGA) in poly(ethylene glycol)-poly(lactic-co-glycolic acid) nanoparticles (PEG-PLGA NPs) and investigate the effects of combining CBGA NPs with cannabis-derived terpene-loaded NPs (myrcene [MC], nerolidol [NL], and caryophyllene [CPh]) for potential applications in pain management.

CBGA NPs (152 nm) and terpene-loaded NPs (233-297 nm) were prepared via nanoprecipitation and emulsion-solvent evaporation, respectively, exhibiting a polydispersity index < 0.3 and negative zeta potentials (-23 to -26 mV). Encapsulation efficiency was 98.6 % for CBGA and 13-33 % for terpenes. CBGA release followed a biphasic profile, with ∼ 20 % released within 4 h and sustained release over 72 h. In vitro evaluation used HEK293 cells expressing the nociceptive transient receptor potential vanilloid-1 (TRPV1) channel, a key mediator of pain perception. TRPV1 activation was assessed via calcium influx kinetics (Fluo-4 indicator). The EC50 values were 23.8 µg/mL (CBGA NPs), 8.0 µg/mL (MC NPs), 6.7 µg/mL (NL NPs), and 13.3 µg/mL (CPh NPs). Combinatorial treatments of CBGA NPs with terpene NPs at their respective EC50 concentrations revealed significantly enhanced calcium influx compared to individual NPs, with the strongest interaction observed for CBGA/NL and moderate effects for CBGA/MC. Fluorescence imaging further corroborated these findings.

These results suggest that combining CBGA NPs with terpene-loaded NPs could potentiate pain-relief efficacy, offering a promising strategy for advanced therapeutic formulations.”

https://pubmed.ncbi.nlm.nih.gov/40419035/

“Cannabis sativa has long been valued for its diverse medicinal properties.”

https://www.sciencedirect.com/science/article/pii/S0378517325006039?via%3Dihub

Full spectrum cannabis oil combined with omega-3 fish oil for neuropathic pain management: a novel therapeutic approach

pubmed logo

“Objectives: Current pharmacological treatments for neuropathic pain have limited efficacy and may cause undesirable side effects. Cannabidiol (CBD)-enriched cannabis oil and omega-3 fatty acids (ω-3) have emerged as potential therapeutic options due to their analgesic and anti-inflammatory properties. This study aimed to assess the antinociceptive effects of combining CBD-enriched cannabis oil and ω-3 in rat models of acute and neuropathic pain.

Methods: Using the hot plate test for acute pain and the chronic constriction injury (CCI) model for neuropathic pain, thermal and mechanical hypersensitivity were evaluated. Additionally, walking track analysis and the rotarod test assessed functional recovery of the sciatic nerve. Beyond that, the histological analysis of sciatic nerves exposed the neuropathological findings of the treatments.

Key findings: The combined treatment of CBD-enriched cannabis oil and ω-3 effectively prevented thermal and mechanical hypersensitivity, while also improving motor impairment-induced peripheral neuropathy. Finally, combination treatment showed a protective effect against degeneration resulting from CCI.

Conclusions: These findings underscore the potential of CBD-enriched cannabis oil and ω-3 as a novel therapeutic approach for neuropathic pain management, offering promising implications for future research and clinical practice.”

https://pubmed.ncbi.nlm.nih.gov/40414709/

https://academic.oup.com/jpp/advance-article-abstract/doi/10.1093/jpp/rgaf027/8148741?redirectedFrom=fulltext&login=false

Effects of cannabidiol (CBD) treatment on age-related cognitive decline in C57 mice

pubmed logo

“Aging is associated with cognitive decline, and currently, there are no approved medications that can prevent these impairments.

Recently, cannabinoids derived from Cannabis sativa have emerged as promising therapeutic compounds with neuroprotective, anti-inflammatory, and cognitive-enhancing properties. Despite their benefits, further research is needed to fully understand their efficacy across various conditions.

This study investigates the effects of cannabidiol (CBD) on memory impairment and brain inflammation in aging mice.

Fourteen-month-old C57 mice were administered CBD orally for 7 months and subsequently evaluated between 19 and 21 months of age using behavioral tasks that are sensitive to dysfunction of the perirhinal cortex, hippocampus, amygdala, and various brain regions that are crucial for motor control and coordination.

The findings of this study indicate that CBD reduces inflammatory response in the brain and improves cognitive decline associated with aging.”

https://pubmed.ncbi.nlm.nih.gov/40416734/

“The findings of this study show that CBD targets inflammatory responses in the brain and can improve cognitive decline associated with aging. It is possible that the effects of CBD treatment can be enhanced if an extract with THC and terpenoids is used.”

https://www.frontiersin.org/journals/aging-neuroscience/articles/10.3389/fnagi.2025.1567650/full

Cannabinol (CBN) alleviates age-related cognitive decline by improving synaptic and mitochondrial health

pubmed logo

“Age-related cognitive decline and neurodegenerative diseases, such as Alzheimer’s disease, represent major global health challenges, particularly with an aging population. Mitochondrial dysfunction appears to play a central role in the pathophysiology of these conditions by driving redox dysregulation and impairing cellular energy metabolism. Despite extensive research, effective therapeutic options remain limited.

Cannabinol (CBN), a cannabinoid previously identified as a potent inhibitor of oxytosis/ferroptosis through mitochondrial modulation, has demonstrated promising neuroprotective effects.

In cell culture, CBN targets mitochondria, preserving mitochondrial membrane potential, enhancing antioxidant defenses and regulating bioenergetic processes. However, the in vivo therapeutic potential of CBN, particularly in aging models, has not been thoroughly explored.

To address this gap, this study investigated the effects of CBN on age-associated cognitive decline and metabolic dysfunction using the SAMP8 mouse model of accelerated aging.

Our results show that CBN significantly improves spatial learning and memory, with more pronounced cognitive benefits observed in female mice. These cognitive improvements are accompanied by sex-specific changes in metabolic parameters, such as enhanced oxygen consumption and energy expenditure. Mechanistically, CBN modulates key regulators of mitochondrial dynamics, including mitofusin 2 (MFN2) and dynamin-related protein 1 (DRP1), while upregulating markers of mitochondrial biogenesis including mitochondrial transcription factor A (TFAM) and translocase of outer mitochondrial membrane 20 (TOM20). Additionally, CBN upregulates key synaptic proteins involved in vesicle trafficking and postsynaptic signaling suggesting that it enhances synaptic function and neurotransmission, further reinforcing its neuroprotective effects.

This study provides in vivo evidence supporting CBN’s potential to mitigate age-related cognitive and metabolic dysfunction, with notable sex-specific effects, highlighting its promise for neurodegenerative diseases and cognitive decline.”

https://pubmed.ncbi.nlm.nih.gov/40412024/

“CBN shows promise as a therapeutic agent for age-related cognitive decline and metabolic dysfunction.”

https://www.sciencedirect.com/science/article/pii/S2213231725002058?via%3Dihub

Low-dose cannabidiol treatment prevents chronic stress-induced phenotypes and is associated with multiple synaptic changes across various brain regions

pubmed logo

“Major Depressive Disorder (MDD) is a heterogeneous and debilitating mood disorder often associated with stress. Although current treatments are available, they remain ineffective for approximately 30% of affected individuals and are frequently accompanied by undesirable side effects.

Cannabidiol (CBD) has emerged as a potential and safe therapeutic option for alleviating depressive symptoms; however, the underlying molecular mechanisms through which this compound exerts its beneficial effects are not yet fully understood.

In this study, we demonstrate that a very low dose of CBD (1 mg/kg) can partially reverse some sequelae induced by chronic stress, a well-established mouse model used to simulate depressive-like symptoms. Using mass spectrometry to analyze different brain regions, we observed several improvements following CBD treatment, particularly in the medial prefrontal cortex (mPFC), across multiple neurotransmission systems (including glutamatergic and serotonergic pathways). Microstructural experiments, utilizing double-labeling of F-Actin and VGlut1-positive clusters, revealed a complete restoration of mature synapses in the mPFC of mice treated with CBD.

In conclusion, our findings indicate that a very low dose of CBD is effective in counteracting the adverse effects of chronic stress, possibly through the synaptic remodeling of excitatory synapses in the mPFC.”

https://pubmed.ncbi.nlm.nih.gov/40409535/

“We show that a very low dose of CBD is enough to correct emotional sequelae in a mouse model of chronic stress.”

https://www.sciencedirect.com/science/article/pii/S0028390825002321?via%3Dihub

Cannabidiol as an immune modulator: A comprehensive review

pubmed logo

“Cannabidiol (CBD), a non-psychoactive phytocannabinoid derived from Cannabis sativa, has emerged as a promising therapeutic agent due to its diverse pharmacological properties, including potent anti-inflammatory, neuroprotective, and immunomodulatory effects.

CBD modulates immune responses, including the regulation of T cell activity, induction of macrophage apoptosis, suppression of pro-inflammatory cytokines, and modulation of signaling pathways involved in inflammation and immune homeostasis. A comprehensive literature search was conducted using PubMed, Scopus, and Web of Science databases to identify relevant preclinical and clinical studies on CBD’s immunomodulatory effects.

Preclinical and clinical studies demonstrate its efficacy in treating autoimmune diseases such as Type 1 diabetes, multiple sclerosis, rheumatoid arthritis, and inflammatory bowel disease, along with its potential in neuropathic pain and cancer therapy.

Recent advancements in nanotechnology-based delivery systems have further enhanced CBD’s therapeutic potential by improving its solubility, bioavailability, and targeted delivery, enabling innovative approaches for wound healing, inflammation management, and cancer treatment. However, challenges such as variability in immune responses, limited long-term safety data, and potential drug-drug interactions persist.

This review comprehensively examines CBD’s pharmacokinetics, pharmacodynamics, and immunomodulatory mechanisms, highlighting its clinical potential, existing limitations, and future directions in advancing its integration into precision medicine and immune regulation.”

https://pubmed.ncbi.nlm.nih.gov/40407987/

“Given the multifaceted pharmacological properties of CBD, it holds significant promise as a therapeutic agent.”

https://link.springer.com/article/10.1007/s44446-025-00005-7

Preventive beneficial effects of cannabidiol in a reserpine-induced progressive model of parkinsonism

pubmed logo

“Introduction: Parkinson’s disease (PD) is characterized by motor and non-motor symptoms such as tremors, difficulty in initiating movements, depression, and cognitive deficits. The pathophysiology of PD involves a gradual decrease in dopaminergic neurons in the substantia nigra, increased inflammatory parameters, and augmented oxidative stress in this region. Several new therapies aim to promote antioxidant and anti-inflammatory actions, including the use of cannabinoids, particularly cannabidiol (CBD). CBD is a non-psychotomimetic component of Cannabis sativa that acts broadly through several mechanisms.

Objective: The objective of this study was to investigate the potential protective effect of CBD in mice subjected to a low-dose (0.1 mg/kg) repeated reserpine protocol, which encompasses behavioral and neuronal alterations compatible with the progressiveness of PD alterations.

Materials and methods: We used two approaches: (1) concurrent administration during the development of parkinsonism and (2) pre-administration to explore a possible preventive action. The effect of CBD (0.5 mg/kg) on reserpine-induced alterations was investigated on behavioral (catalepsy and vacuous chewing movements) and neuronal (immunolabeling for tyrosine hydroxylase – TH) parameters.

Results: Overall, groups that were treated with CBD and reserpine presented motor alterations later during the protocol compared to the groups that received only reserpine (except for vacuous chewing evaluation in the concomitant treatment). Additionally, CBD attenuated reserpine-induced catalepsy (preventive treatment) and prevented the decrease in TH labeling in the substantia nigra pars compacta in both concurrent and preventive protocols.

Conclusion: Based on these data, we observed a beneficial effect of CBD in motor and neuronal alterations reserpine-induced progressive parkinsonism, particularly after preventive treatment.”

https://pubmed.ncbi.nlm.nih.gov/40406493/

“The data presented here demonstrate that CBD can attenuate the development of reserpine-induced parkinsonism and protect the loss of dopaminergic neuron in the substantia nigra, with better outcomes in the preventive protocol. The overall effect of CBD is to delay the onset of motor deficits, rather than preventing them entirely. More studies are necessary to understand how CBD exhibits this neuroprotective effect.”

https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2025.1539783/full