Therapeutic targeting of the tumor microenvironments with cannabinoids and their analogs: Update on clinical trials

pubmed logo

“Cancer is a major global public health concern that affects both industrialized and developing nations. Current cancer chemotherapeutic options are limited by side effects, but plant-derived alternatives and their derivatives offer the possibilities of enhanced treatment response and reduced side effects.

A plethora of recently published articles have focused on treatments based on cannabinoids and cannabinoid analogs and reported that they positively affect healthy cell growth and reverse cancer-related abnormalities by targeting aberrant tumor microenvironments (TMEs), lowering tumorigenesis, preventing metastasis, and/or boosting the effectiveness of chemotherapy and radiotherapy.

Furthermore, TME modulating systems are receiving much interest in the cancer immunotherapy field because it has been shown that TMEs have significant impacts on tumor progression, angiogenesis, invasion, migration, epithelial to mesenchymal transition, metastasis and development of drug resistance.

Here, we have reviewed the effective role of cannabinoids, their analogs and cannabinoid nano formulations on the cellular components of TME (endothelial cells, pericytes, fibroblast and immune cells) and how efficiently it retards the progression of carcinogenesis is discussed. The article summarizes the existing research on the molecular mechanisms of cannabinoids regulation of the TME and finally highlights the human studies on cannabinoids’ active interventional clinical trials.

The conclusion outlines the need for future research involving clinical trials of cannabinoids to demonstrate their efficacy and activity as a treatment/prevention for various types of human malignancies.”

https://pubmed.ncbi.nlm.nih.gov/37146933/

https://www.sciencedirect.com/science/article/abs/pii/S0013935123006540?via%3Dihub

Medical cannabis is effective for cancer-related pain: Quebec Cannabis Registry results

pubmed logo

“Objectives: To evaluate the safety and effectiveness of medical cannabis (MC) in reducing pain and concurrent medications in patients with cancer.

Methods: This study analysed data collected from patients with cancer who were part of the Quebec Cannabis Registry. Brief Pain Inventory (BPI), revised Edmonton Symptom Assessment System (ESAS-r) questionnaires, total medication burden (TMB) and morphine equivalent daily dose (MEDD) recorded at 3-month, 6-month, 9-month and 12-month follow-ups were compared with baseline values. Adverse events were also documented at each follow-up visit.

Results: This study included 358 patients with cancer. Thirteen out of 15 adverse events reported in 11 patients were not serious; 2 serious events (pneumonia and cardiovascular event) were considered unlikely related to MC. Statistically significant decreases were observed at 3-month, 6-month and 9-month follow-up for BPI worst pain (5.5±0.7 baseline, 3.6±0.7, 3.6±0.7, 3.6±0.8; p<0.01), average pain (4.1±0.6 baseline, 2.4±0.6, 2.3±0.6, 2.7±0.7; p<0.01), overall pain severity (3.7±0.5 baseline, 2.3±0.6, 2.3±0.6, 2.4±0.6; p<0.01) and pain interference (4.3±0.6 baseline, 2.4±0.6, 2.2±0.6, 2.4±0.7, p<0.01). ESAS-r pain scores decreased significantly at 3-month, 6-month and 9-month follow-up (3.7±0.6 baseline, 2.5±0.6, 2.2±0.6, 2.0±0.7, p<0.01). THC:CBD balanced strains were associated with better pain relief as compared with THC-dominant and CBD-dominant strains. Decreases in TMB were observed at all follow-ups. Decreases in MEDD were observed at the first three follow-ups.

Conclusions: Real-world data from this large, prospective, multicentre registry indicate that MC is a safe and effective complementary treatment for pain relief in patients with cancer. Our findings should be confirmed through randomised placebo-controlled trials.”

https://pubmed.ncbi.nlm.nih.gov/37130724/

https://spcare.bmj.com/content/early/2023/04/11/spcare-2022-004003

Repositioning Cannabinoids and Terpenes as Novel EGFR-TKIs Candidates for Targeted Therapy Against Cancer: A virtual screening model using CADD and biophysical simulations

pubmed logo

“This study examines the potential of Cannabis sativa L. plants to be repurposed as therapeutic agents for cancer treatment through designing of hybrid Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). A set of 50 phytochemicals was taken from Cannabinoids and Terpenes and subjected for screening using Semi-flexible and Flexible Molecular Docking methods, MM-GBSA free binding energy computations, and pharmacokinetic/pharmacodynamic (ADME-Tox) predictions.

Nine promising phytochemicals, Cannabidiolic acid (CBDA), Cannabidiol (CBD), Tetrahydrocannabivarin (THCV), Dronabinol (Δ-9-THC), Delta-8-Tetrahydrocannabinol (Δ-8-THC), Cannabicyclol (CBL), Delta9-tetrahydrocannabinolic acid (THCA), Beta-Caryophyllene (BCP), and Gamma-Elemene (γ-Ele) were identified as potential EGFR-TKIs natural product candidates for cancer therapy.

To further validate these findings, a set of Molecular Dynamics simulations were conducted over a 200 ns trajectory. This hybrid early drug discovery screening strategy has the potential to yield a new generation of EGFR-TKIs based on natural cannabis products, suitable for cancer therapy. In addition, the application of this computational strategy in the virtual screening of both natural and synthetic chemical libraries could support the discovery of a wide range of lead drug agents to address numerous diseases.”

https://pubmed.ncbi.nlm.nih.gov/37128337/

https://www.cell.com/heliyon/fulltext/S2405-8440(23)02752-4?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2405844023027524%3Fshowall%3Dtrue

Antitumoral effects of cannabis in Notch1-mutated T-cell acute lymphoblastic leukemia

“In T-cell acute lymphoblastic leukemia (T-ALL), an aggressive hematologic cancer with poor clinical outcomes, more than 50% of cases show NOTCH1-driven transformation [1]. The NOTCH1 receptor signaling pathway is activated through a series of proteolytic cleavages, ultimately causing the release of the active intracellular domain (NICD), which translocates to the nucleus where it promotes transcription of target genes involved in cell growth. The importance of NOTCH1 mutations in T-ALL has generated great interest in the development of anti-NOTCH1 targeted therapies.

A new and promising emerging field in cancer treatment is medical cannabis. Accumulating evidence suggests the direct effects of cannabis on tumor progression in cell lines and animal models [2]. Cannabis, and its unique secondary metabolites, known as phytocannabinoids, directly affect the propagation of cancer cells by modulating key cellsignaling pathways.

We have previously demonstrated that different cannabis extracts, each containing a unique composition of metabolites, selectively impaired the survival of cancer cell lines depending on a match between the chemical composition of the extract and the characteristics of the specific cancer cell line.

In the present work, we set out to investigate whether cannabis extracts with unique phytocannabinoid profiles can selectively facilitate antitumor effects in T-ALL cells that harbor a Notch1 mutation.

In summary, targeting NOTCH1 signaling has generated much interest for its therapeutic potential. However, so far, efforts to develop such treatments have been unsuccessful.

The cannabis plant contains over 140 phytocannabinoids, many of which are presumed to have pharmacological properties, and accumulating evidence suggests anticancer capabilities.

Here, we identified a specific CBD-rich extract that selectively induced apoptosis in NOTCH1-mutated T-ALL cells. Although CBD by itself was able to induce cell death, the whole extract was more effective, suggesting that other metabolites from the plant are required to achieve full potency.

We have previously demonstrated this phenomenon in a mouse model of epilepsy, where CBD-rich extracts with equal amounts of CBD but varying concentrations of other minor compounds led to diverse anticonvulsant effects. A possible mechanism previously suggested to explain the difference between the effects of purified phytocannabinoids versus full-spectrum extracts is the “entourage effect”, where one compound may enhance the activity and efficacy of another on the same target. While this synergy is well-established for endogenous cannabinoids of the endocannabinoid system, only very few studies demonstrated this phenomenon for phytocannabinoids.

Cannabis is already being prescribed to cancer patients for its palliative qualities; however, the huge variety between different chemovars in their composition is disregarded. Matching an effective extract to certain cancer subtypes will ultimately lead to personalized cancer treatments and medications that not only treat symptoms but also treat the disease.

As dysregulation of NOTCH1 signaling has been found in various cancers other than T-ALL and in non-cancerous diseases, our findings suggest a novel therapeutic strategy for the effective treatment of a variety of malignancies.”

https://pubmed.ncbi.nlm.nih.gov/37086009/

https://onlinelibrary.wiley.com/doi/10.1002/cac2.12422

The endocannabinoid system, a new gatekeeper in the pharmacology of human hepatocellular carcinoma

Environmental Research

“Despite numerous prevention methodologies and treatment options, hepatocellular carcinoma (HCC) still remains as the third leading life-threatening cancer. It is thus pertinent to develop new treatment modality to fight this devastating carcinoma.

Ample recent studies have shown the anti-inflammatory and antitumor roles of the endocannabinoid system in various forms of cancers. Preclinical studies have also confirmed that cannabinoid therapy can be an optimal regimen for cancer treatments.

The endocannabinoid system is involved in many cancer-related processes, including induction of endoplasmic reticulum (ER) stress-dependent apoptosis, autophagy, PITRK and ERK signaling pathways, cell invasion, epithelial-mesenchymal transition (EMT), and cancer stem cell (CSC) phenotypes. Moreover, changes in signaling transduction of the endocannabinoid system can be a potential diagnostic and prognostic biomarker for HCC.

Due to its pivotal role in lipid metabolism, the endocannabinoid system affects metabolic reprogramming as well as lipid content of exosomes. In addition, due to the importance of non-coding RNAs (ncRNAs), several studies have examined the relationship between microRNAs and the endocannabinoid system in HCC. However, HCC is a pathological condition with high heterogeneity, and therefore using the endocannabinoid system for treatment has faced many controversies. While some studies favored a role of the endocannabinoid system in carcinogenesis and tumor induction, others exhibited the anticancer potential of endocannabinoids in HCC.

In this review, specific studies delineating the relationship between endocannabinoids and HCC are examined. Based on collected findings, detailed studies of the molecular mechanism of endocannabinoids as well as preclinical studies for investigating therapeutic or carcinogenic impacts in HCC cancer are strongly suggested.”

https://pubmed.ncbi.nlm.nih.gov/37062475/

https://www.sciencedirect.com/science/article/abs/pii/S0013935123007065?via%3Dihub

Cannabidiol prevents chemotherapy-induced neuropathic pain by modulating spinal TLR4 via endocannabinoid system activation

Journal of Pharmacy and Pharmacology

“Objectives: This study aimed to investigate the effect of cannabidiol (CBD) on type 4 Toll-like receptors (TLR4), glial cells and pro-inflammatory cytokines during the neuropathic pain induced by the chemotherapy agent paclitaxel (PTX), as well as the involvement of the endocannabinoid system in this process.

Methods: Male C57BL6 mice were subjected to PTX-induced neuropathic pain. To evaluate the involvement of the TLR4, glial cells and cannabinoid CB2 receptor, specific inhibitors or antagonists were intrathecally administered. The western blotting and immunofluorescence assay was performed to evaluate the spinal expression of TLR4, microglia, astrocytes and cannabinoid CB2 receptor. The levels of spinal pro-inflammatory cytokines and endocannabinoids were determined by enzyme-linked immunosorbent assay and liquid chromatography-mass spectrometry analysis, respectively.

Key findings: CBD prevented PTX-induced neuropathic pain, and the cannabinoid CB2 receptor antagonist AM630 reversed this effect. In addition, CBD treatment inhibited the spinal expression of TLR4 and Iba1 in mice with neuropathic pain. CBD also increased spinal levels of endocannabinoids anandamide and 2-arachidonoylglycerol, and reduced levels of cytokines in mice with neuropathic pain.

Conclusions: CBD was efficient in preventing PTX-induced neuropathic pain, and this effect may involve inhibition of the TLR4 on microglia spinal with activation of the endocannabinoid system.”

https://pubmed.ncbi.nlm.nih.gov/36946366/

https://academic.oup.com/jpp/advance-article-abstract/doi/10.1093/jpp/rgad023/7083482?redirectedFrom=fulltext&login=false

Specific cannabinoids revive adaptive immunity by reversing immune evasion mechanisms in metastatic tumours

Frontiers in Immunology added to Thomson Reuters Journal Citation Reports -  Science & research news | Frontiers

“Emerging cancers are sculpted by neo-Darwinian selection for superior growth and survival but minimal immunogenicity; consequently, metastatic cancers often evolve common genetic and epigenetic signatures to elude immune surveillance. Immune subversion by metastatic tumours can be achieved through several mechanisms; one of the most frequently observed involves the loss of expression or mutation of genes composing the MHC-I antigen presentation machinery (APM) that yields tumours invisible to Cytotoxic T lymphocytes, the key component of the adaptive cellular immune response.

Fascinating ethnographic and experimental findings indicate that cannabinoids inhibit the growth and progression of several categories of cancer; however, the mechanisms underlying these observations remain clouded in uncertainty. Here, we screened a library of cannabinoid compounds and found molecular selectivity amongst specific cannabinoids, where related molecules such as Δ9-tetrahydrocannabinol, cannabidiol, and cannabigerol can reverse the metastatic immune escape phenotype in vitro by inducing MHC-I cell surface expression in a wide variety of metastatic tumours that subsequently sensitizing tumours to T lymphocyte recognition.

Remarkably, H3K27Ac ChIPseq analysis established that cannabigerol and gamma interferon induce overlapping epigenetic signatures and key gene pathways in metastatic tumours related to cellular senescence, as well as APM genes involved in revealing metastatic tumours to the adaptive immune response. Overall, the data suggest that specific cannabinoids may have utility in cancer immunotherapy regimens by overcoming immune escape and augmenting cancer immune surveillance in metastatic disease. Finally, the fundamental discovery of the ability of cannabinoids to alter epigenetic programs may help elucidate many of the pleiotropic medicinal effects of cannabinoids on human physiology.”

https://pubmed.ncbi.nlm.nih.gov/36923728/

https://www.frontiersin.org/articles/10.3389/fimmu.2022.982082/full

Anticancer properties of cannabidiol and Δ9-tetrahydrocannabinol and synergistic effects with gemcitabine and cisplatin in bladder cancer cell lines

ISRCTN - Publish with BMC

“Introduction: With the legalization of cannabis in multiple jurisdictions throughout the world, a larger proportion of the population consumes cannabis. Several studies have demonstrated anti-tumor effects of components present in cannabis in different models. Unfortunately, little is known about the potential anti-tumoral effects of cannabinoids in bladder cancer and how cannabinoids could potentially synergize with chemotherapeutic agents. Our study aims to identify whether a combination of cannabinoids, like cannabidiol and Δ9-tetrahydrocannabinol, with agents commonly used to treat bladder cancer, such as gemcitabine and cisplatin, can produce desirable synergistic effects. We also evaluated if co-treatment with different cannabinoids resulted in synergistic effects.

Methods: We generated concentration curves with several drugs, including several cannabinoids, to identify the range at which they could exert anti-tumor effects in bladder cancer cell lines. We tested the cytotoxic effects of gemcitabine (up to 100 nM), cisplatin (up to 100 μM), and cannabinoids (up to 10 μM) in T24 and TCCSUP cells. We also evaluated the activation of the apoptotic cascade and whether cannabinoids have the ability to reduce invasion in T24 cells.

Results: Cannabidiol, Δ9-tetrahydrocannabinol, cannabichromene, and cannabivarin reduce cell viability of bladder cancer cell lines, and their combination with gemcitabine or cisplatin may induce differential responses, from antagonistic to additive and synergistic effects, depending on the concentrations used. Cannabidiol and Δ9-tetrahydrocannabinol were also shown to induce apoptosis via caspase-3 cleavage and reduce invasion in a Matrigel assay. Cannabidiol and Δ9-tetrahydrocannabinol also display synergistic properties with other cannabinoids like cannabichromene or cannabivarin, although individual cannabinoids may be sufficient to reduce cell viability of bladder cancer cell lines.

Discussion: Our results indicate that cannabinoids can reduce human bladder transitional cell carcinoma cell viability, and that they can potentially exert synergistic effects when combined with other agents. Our in vitro results will form the basis for future studies in vivo and in clinical trials for the development of new therapies that could be beneficial for the treatment of bladder cancer in the future.”

https://pubmed.ncbi.nlm.nih.gov/36870996/

“Our results show the ability of different cannabinoids to produce synergistic effects when combined with other agents like gemcitabine and cisplatin that are significantly different from each drug used alone.”

https://jcannabisresearch.biomedcentral.com/articles/10.1186/s42238-023-00174-z

The protective effect of cannabinoids against colorectal cancer cachexia through modulation of inflammation and immune responses

Biomedicine & Pharmacotherapy

“Cancer cachexia is a multifactorial disorder characterized by weight loss and muscle wasting, and there are currently no FDA-approved medications. In the present study, upregulation of six cytokines was observed in serum samples from patients with colorectal cancer (CRC) and in mouse models. A negative correlation between the levels of the six cytokines and body mass index in CRC patients was seen. Gene Ontology analysis revealed that these cytokines were involved in regulating T cell proliferation. The infiltration of CD8+ T cells was found to be associated with muscle atrophy in mice with CRC. Adoptive transfer of CD8+ T cells isolated from CRC mice resulted in muscle wasting in recipients.

The Genotype-Tissue Expression database showed that negative correlations between the expression of cachexia markers and cannabinoid receptor 2 (CB2) in human skeletal muscle tissues. Pharmacological treatment with Δ9-tetrahydrocannabinol (Δ9-THC), a selective CB2 agonist or overexpression of CB2 attenuated CRC-associated muscle atrophy. In contrast, knockout of CB2 with a CRISPR/Cas9-based strategy or depletion of CD8+ T cells in CRC mice abolished the Δ9-THC-mediated effects.

This study demonstrates that cannabinoids ameliorate CD8+ T cell infiltration in CRC-associated skeletal muscle atrophy via a CB2-mediated pathway. Serum levels of the six-cytokine signature might serve as a potential biomarker to detect the therapeutic effects of cannabinoids in CRC-associated cachexia.”

https://pubmed.ncbi.nlm.nih.gov/36871538/

“In recent years, researchers have gradually found that marijuana, in addition to recreational use, has potential applications as a supportive therapy or palliative medicine.

In conclusion, our findings indicate that the infiltration of CD8+ T cells in skeletal muscle plays a vital role in CRC-associated muscle atrophy. Treatment with Δ9-THC or CB65 can ameliorate CRC-associated cachexia and muscle atrophy by activating CB2 in CD8+ T cells. Targeting the CB2 receptor in CD8+ T cells should be evaluated as a therapeutic option for CRC patients who develop cachexia, and the six-cytokine signature in serum might serve as a potential biomarker for the therapeutic effects of cannabinoids in CRC-associated cachexia.”

https://www.sciencedirect.com/science/article/pii/S075333222300255X?via%3Dihub

Cannabidiol and Cannabis Sativa as a potential treatment in vitro prostate cancer cells silenced with RBBp6 and PC3 xenograft

SpringerLink

“Background: Prostate cancer is the second most frequently occurring carcinoma in males worldwide and one of the leading causes of death in men around the world. Recent studies estimate that over 1.4 million males are diagnosed with prostate cancer on an annual basis, with approximately 375,000 succumbing to the disease annually. With current treatments continuing to show severe side effects, there is a need for new treatments. In this study we looked at the effect of cannabis sativa extract, cannabidiol and cisplatin on prostate cancer cells, PC3.

Methods: In addressing the above questions, we employed the MTT assay to measure the antiproliferative effect on PC3 cells following treatment with varying concentrations of Cannabis sativa extract, cisplatin and cannabidiol. xCELLigence was also used to confirm the IC50 activity in which cells were grown in a 16 well plate coated with gold and monitor cell attachment. Caspase 3/7 activity was also measured using 96 well-plate following treatment. Western-blot and qRT-PCR was also used to measure the gene expression of tumour suppressor genes, p53, Bax and Bcl2. Animal studies were employed to measure the growth of PC3-mouse derived cancer to evaluate the effect of compounds in vivo.

Results: From the treatment with varying concentrations of Cannabis sativa extract, cannabidiol and cisplatin, we have observed that the three compounds induced antiproliferation of PC3 cancer cell lines through the activation of caspase 3/7 activity. We also observed induction of apoptosis in these cells following silencing of retinoblastoma binding protein 6 (RBBP6), with upregulation of p53 and bax mRNA expression, and a reduction in Bcl2 gene expression. The growth of tumours in the mouse models were reduced following treatment with cisplatin and cannabidiol.

Conclusion: We demonstrated that cannabidiol is a viable therapy to treat prostate cancer cells, in combination with silencing of RBBP6. This suggests that cannabidiol rather Cannabis sativa extract may play an important role in reducing cancer progression.”

https://pubmed.ncbi.nlm.nih.gov/36853473/

“In conclusion, these results further suggest that CBD is an effective anti-tumor drug which possesses anti-proliferative and pro-apoptotic properties. Additionally, these findings point to a crosstalk between RBBP6 silencing and CBD treatment rather than Cannabis sativa extract. Moreover, CBD-siRBBP6 has shown an important role of p53 up-regulation in prostate cancer, a tumor microenvironment modulating property. In conclusion, the findings of this study promote using CBD in cancer patients mostly with an inactivated p53 gene.”

https://link.springer.com/article/10.1007/s11033-022-08197-0