Opioid reduction in patients with chronic non-cancer pain undergoing treatment with medicinal cannabis

pubmed logo

“Introduction: Opioid sparing by co-prescription of cannabinoids may enable patients to reduce their opioid consumption prescribed for chronic benign pain.

Methods: One cohort attending a small private pain clinic (N = 102), already taking opioids, was co-prescribed cannabinoids and another cohort (N = 53) attending a separate pain clinic nearby received only opioids. The two groups were studied prospectively for a year before their drug consumption was assessed.

Results: At baseline, median opioid consumption was 40 mg/day in both cohorts. Medicinal cannabis was administered daily in an oil formulation usually starting at 2.5 mg/day and was titrated to maximize benefits. At 12 months, the median dose contained 15 mg delta-9-tetrahydrocannabinol and 15 mg cannabidiol. At one-year follow-up, 46 of 102 cases had dropped out compared with only one of 53 controls. Opioid consumption had decreased significantly at one-year follow-up, the final median dose being lower in cases (2.7 mg/day) than controls (42.3 mg/day) (p < 0.05 in an intention-to-treat analysis). Disability and insomnia had also decreased in cases.

Conclusion: The introduction of cannabinoids can produce useful reductions in opioid consumption in real-world settings, with additional benefits for disability and insomnia. However, this treatment is tolerated by only a subgroup of patients.”

https://pubmed.ncbi.nlm.nih.gov/40788193/

“Plain language summary

Morphine-like drugs (opioids) decrease pain but can cause severe breathing problems and death if these drugs are consumed in excessive amounts. Stopping these drugs suddenly (going “cold turkey”) can cause severe adverse effects and, as time goes on, increasing amounts may be required to reduce pain. It might be possible to reduce opioid consumption by also taking medicinal cannabis; otherwise, reduction can be difficult to achieve. Cannabis treatment is safe when the hallucinatory component of cannabis is kept to low levels, causing minimal euphoric effects (a “stoned” sensation).In this study, two groups of patients with chronic pain were studied. Both were taking opioid drugs, but one group also took medicinal cannabis. About half of the medicinal cannabis group were not able to keep taking it due to unpleasant side effects. In the remainder, opioid consumption decreased significantly after both 6 and 12 months. Physical activity and sleep also improved. These findings indicate that medicinal cannabis can help patients to reduce their opioid consumption and improve their physical activity and sleep.”

“These findings indicate that medicinal cannabis can help patients to reduce their opioid consumption and improve their physical activity and sleep.”

https://www.tandfonline.com/doi/full/10.1080/17581869.2025.2544511

Medical Cannabis Use and Healthcare Utilization Among Patients with Chronic Pain: A Causal Inference Analysis Using TMLE

pubmed logo

“Introduction: Chronic pain affects approximately 20% of U.S. adults, imposing significant burdens on individuals and healthcare systems. Medical cannabis has emerged as a potential therapy, yet its impact on healthcare utilization remains unclear.

Methods: This retrospective cohort study analyzed administrative data from a telehealth platform providing medical cannabis certifications across 36 U.S. states. Patients were classified as cannabis-exposed if they had used cannabis in the past year, while unexposed patients had no prior cannabis use. Outcomes included self-reported urgent care visits, emergency department (ED) visits, hospitalizations, and quality of life (QoL), measured using the CDC’s Healthy Days measure. Targeted Maximum Likelihood Estimation with SuperLearner estimated causal effects, adjusting for numerous covariates.

Results: Medical cannabis users exhibited significantly lower healthcare utilization. Specifically, exposure was associated with a 2.0 percentage point reduction in urgent care visits (95% CI: -0.036, -0.004), a 3.2 percentage point reduction in ED visits (95% CI: -0.051, -0.012) and fewer unhealthy days per month (-3.52 days, 95% CI: -4.28, -2.76). Hospitalization rates trended lower but were not statistically significant. Covariate balance and propensity score overlap indicated well-fitting models.

Conclusions: Medical cannabis use was associated with reduced healthcare utilization and improved self-reported QoL among chronic pain patients.”

https://pubmed.ncbi.nlm.nih.gov/40700267/

“The findings of this study suggest, in line with existing research, that medical cannabis is likely an effective treatment option for patients with chronic pain. Moreover, we found that, in addition to an increase in QoL, medical cannabis exposure is associated with lower risk of urgent care and ED visits, when comparing patients who used medical cannabis for at least one year to cannabis-naïve patients. This underscores the potential for not only QoL gains associated with medical cannabis use, but also positive downstream effects on the healthcare system resulting from treatment.”

https://www.mdpi.com/2226-4787/13/4/96

Machine-learning of medical cannabis chemical profiles reveals analgesia beyond placebo expectations

pubmed logo

“Background: The efficacy of medical cannabis in alleviating pain has been demonstrated in clinical trials, yet questions remain regarding the extent to which specific chemical compounds contribute to analgesia versus expectation-based (placebo) responses. Effective blinding is notoriously difficult in cannabis trials, complicating the identification of compound-specific effects.

Methods: In a prospective study of 329 chronic pain patients (40% females; aged 48.9 ± 15.5) prescribed medical cannabis, we examined whether the chemical composition of cannabis cultivars could predict treatment outcomes. We used a Random Forest classifier with nested cross-validation to assess the predictive value of demographics, clinical features, and approximately 200 chemical compounds. Model robustness was evaluated using six additional machine learning algorithms.

Results: Here we show that incorporating chemical composition markedly improves the prediction of pain relief (AUC = 0.63 ± 0.10) compared to models using only demographic and clinical features (AUC = 0.52 ± 0.09; p < 0.001). This result is consistent across all models tested. While well-known cannabinoids such as THC and CBD provide limited predictive value, specific terpenoids, particularly α-Bisabolol and eucalyptol, emerge as key predictors of treatment response.

Conclusions: Our findings demonstrate that pain relief can be predicted from cannabis chemical profiles that are unknown to patients, providing evidence for compound-specific therapeutic effects. These results highlight the importance of considering the full range of cannabis compounds when developing more precise and effective cannabis-based therapies for pain management.”

https://pubmed.ncbi.nlm.nih.gov/40670615/

“Chronic pain affects millions of people, and many turn to medical cannabis for relief. However, scientists debate whether cannabis truly reduces pain or if patients feel better simply because they expect it to work (placebo effect). In this study, we looked at 329 people who used medical cannabis and analyzed the chemical makeup of their treatments. Using machine learning, we tested whether the specific chemicals in cannabis could predict who would get pain relief.

We found that patients’ pain improvement could be predicted from the chemical content of their cannabis, even though patients didn’t know what chemicals they were receiving. This suggests that cannabis provides real pain relief beyond just patient expectations.

These findings show that medical cannabis has genuine therapeutic effects for pain management.”

“In conclusion, to the best of our knowledge, our study provides compelling evidence that the efficacy of MC in pain relief is not merely a placebo response but is strongly influenced by its diverse chemical composition. Our findings challenge the traditional focus on THC and CBD as the primary therapeutic agents in cannabis and highlight the importance of considering the full spectrum of chemical compounds present in MC. By embracing a more comprehensive approach to understanding MC’s therapeutic potential, we can work towards developing safer, more effective, and more precisely targeted treatments for the millions of individuals suffering from chronic pain worldwide.”

https://www.nature.com/articles/s43856-025-00996-3

The Role of the Endocannabinoid System in the Mechanism of Action of Nonopioid Analgesics

pubmed logo

“The endocannabinoid system (eCBS) plays a crucial role in pain modulation through its components, including endocannabinoids, cannabinoid receptors (CB1 and CB2), and metabolic enzymes.

Recent research highlights the interaction between the eCBS and non-opioid analgesics, including nonsteroidal anti-inflammatory drugs (NSAIDs), acetaminophen, and pyrazolones. These agents may enhance endogenous endocannabinoid levels or influence eCBS signaling pathways, providing a multifaceted approach to pain relief.

This review examines the pharmacological mechanisms underlying these interactions, focusing on the potential of non-opioid eCBS interactions, detailing synergistic effects that could improve analgesic efficacy while minimizing side effects. Additionally, we explore the therapeutic implications of co-administering non-opioid analgesics with eCBS modulators to create more effective pain management strategies.

The combined modulation of non-opioid pathways and the eCBS represents a promising treatment for acute and chronic pain, warranting further clinical investigation and translational research in this evolving field.”

https://pubmed.ncbi.nlm.nih.gov/40659176/

“Emerging Therapeutic Strategies: The integration of non-opioid medications with eCBS modulators represents a novel approach in pain management strategies, aiming to minimize opioid use while maximizing therapeutic efficacy and safety profiles during chronic pain management.”

https://www.sciencedirect.com/science/article/abs/pii/S0014299925007009?via%3Dihub

Cannabidiol interactions with Δ-9-tetrahydrocannabinol on antinociception after carrageenan-induced inflammatory pain in male and female rats

pubmed logo

“Cannabis products used for pain typically contain Δ-9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) in varied amounts, but data on the effects of specific cannabinoid formulations on different pain types are lacking.

This study used the carrageenan-induced inflammatory pain model to test oral Δ9-THC, CBD, or their combination on acute edema and pain hypersensitivity.

Male and female Sprague-Dawley rats (n = 10-14 per sex/group) were pretreated (1 hour) with vehicle (sesame oil), Δ9-THC (1, 3, and 10 mg/kg, p.o.), CBD (10, 30, 100 mg/kg, p.o.), or select doses of Δ9-THC + CBD combinations prior to an intraplantar λ-carrageenan injection into the hind paw.

The nonsteroidal anti-inflammatory drug ketoprofen (10 and 20 mg/kg i.p.) or its vehicle (1:1:18 ethanol:Cremophor EL:saline [Millipor Sigma]) was administered to a separate group as a positive control. Measurements were conducted at baseline and 1, 3, and 5 hours after carrageenan injection. Carrageenan produced edema and hypersensitivity to radiant heat (hyperalgesia) and mechanical pressure (allodynia).

Δ9-THC alone sex- and dose-dependently decreased hyperalgesia and allodynia but not inflammation, with effects of Δ9-THC being greater in females than males, and the lowest Δ9-THC dose was proinflammatory in males. CBD alone did not affect pain sensitivity but had modest anti-inflammatory effects in males. Isobolographic and dose addition analyses indicated Δ9-THC + CBD was subadditive relative to Δ9-THC alone.

These data demonstrate that prophylactic oral Δ9-THC alleviates acute inflammatory pain with sex-dependent effects, and CBD diminishes Δ9-THC antinociception when combined.

The findings suggest oral Δ9-THC is superior to CBD or combined Δ9-THC + CBD for acute inflammatory pain.

SIGNIFICANCE STATEMENT: Despite the popularity of cannabis for pain management, empirical data on how specific cannabinoid formulations affect acute inflammatory pain are limited. This study in rats found that pure Δ-9-tetrahydrocannabinol (Δ9-THC) formulations were most effective at improving inflammatory pain compared to pure cannabidiol or Δ9-THC + cannabidiol combinations, and females were more sensitive than males to the antinociceptive effects of Δ9-THC.”

https://pubmed.ncbi.nlm.nih.gov/40609153/

https://jpet.aspetjournals.org/retrieve/pii/S0022356525398381

Cannabinoid receptor ligands with potential therapeutic applications and mechanisms of action: a versatile natural therapeutic agent

pubmed logo

“The endocannabinoid system (ECS) is a complex signaling network essential for regulating various physiological processes in the body. Selective cannabinoid receptor ligands have been developed to modulate specific ECS signaling pathways, offering potential therapeutic benefits. These ligands, with high selectivity and affinity for cannabinoid receptors, demonstrate potential in managing diverse medical conditions. Standardizing dosing is crucial to ensure reliable therapeutic effects, as cannabinoids may exhibit biphasic effects. Combination strategies involving both CB1 and CB2 receptor modulation show promise in managing complex conditions, including chronic pain, autoimmune disorders, and neurodegenerative diseases.”

https://pubmed.ncbi.nlm.nih.gov/40600897/

https://www.tandfonline.com/doi/full/10.1080/10286020.2025.2522396

How to ESCAPE from Pain? An Observational Study on Improving Pain and Quality of Life with the Cannamedical® Hybrid Cannabis Extract

pubmed logo

“Introduction: Chronic pain remains a challenge, with standard therapies often providing inadequate pain relief and causing undesirable side effects. Medicinal cannabis has emerged as promising alternative. This study assessed the impact of a cannabis hybrid extract on pain intensity and quality of life in daily clinical use.

Methods: ESCAPE was an observational study and included patients aged ≥ 18 years with chronic pain in Germany. The primary objective was to evaluate the effectiveness of the Cannamedical® Hybrid Cannabis Extract THC25:CBD25 on pain during four visits (V1-V4) in clinical practice, and key secondary objectives were pain interference and quality of life. Pain intensity was measured using the Numeric Rating Scale (NRS) of the Brief Pain Inventory (BPI) questionnaire. Pain interference was evaluated with the BPI pain interference subscore, and quality of life-particularly physical and mental health-was assessed with the Short Form-12 (SF-12) questionnaire. Additionally, patient and physician satisfaction with the extract was assessed.

Results: The study included 64 patients (50% female) with chronic pain (intention-to treat population; ITT). Cannabis-naïve patients of the ITT were defined as a subgroup and analyzed separately (N = 35). Mean (± SD) NRS-assessed pain intensity decreased during the study, in both the ITT (5.46 ± 1.73 at V1 vs. 3.37 ± 2.43 at V4) and in the cannabis-naïve subgroup (5.92 ± 1.34 at V1 vs. 2.37 ± 1.69 at V4). Mean pain interference subscore decreased between V1 and V4 for the ITT (5.39 ± 1.92 vs. 3.38 ± 2.46) and the cannabis-naïve group (5.68 ± 1.46 vs. 2.54 ± 1.99). Physical and mental health improved in both groups and high satisfaction with the hybrid cannabis extract was reported by patients and physicians.

Conclusion: Treatment with the Cannamedical® Hybrid Cannabis Extract THC25:CBD25 in daily clinical practice showed positive effects on patients’ pain and quality of life.”

https://pubmed.ncbi.nlm.nih.gov/40560527/

https://link.springer.com/article/10.1007/s12325-025-03262-z

Effectiveness of Full Spectrum Cannabis Extracts in the Treatment of Chronic Pain: An Open Label Study

pubmed logo

“The aim of this work was to assess the effectiveness of full-spectrum cannabis (THC and CBD) extracts as adjuvants in the treatment of chronic pain. This is a prospective, open label, longitudinal study.

Major cannabinoids were analyzed in herbal preparations using high performance liquid chromatography (HPLC). Subjects were included when chronic pain diagnosis criteria was met according to physicians’ diagnosis. A patient stratification protocol was developed using a visual analogue scale to measure pain, a numerical scale for life quality parameters and a self-administered health survey. Eighty-eight patients aged between 35 and 88 years were included.

A significant decrease in both pain and other life quality parameters was observed between time zero and subsequent time intervals, excepting the “appetite” variable.

Overall, 51 individuals reported a decrease in pain, 38 a decrease in anxiety and 48 in insomnia, with “decrease” defined as symptom reduction of 50% or more between the first and last consultation. In addition, 23 subjects reduced or discontinued other analgesics and/or anti-inflammatory drugs during the trial. Adverse effects were mild and reversible.

These results are consistent with previous studies, supporting effectiveness and safety of cannabis extracts as adjuvants in the treatment of chronic pain.”

https://pubmed.ncbi.nlm.nih.gov/40526158/

https://www.tandfonline.com/doi/full/10.1080/15360288.2025.2517778

Patterns, Efficacy, and Cognitive Effects of Medical Cannabis Use in Chronic Musculoskeletal Pain Patients

pubmed logo

“Background: Medical cannabis (MC) is being used with greater frequency in the management of chronic pain. While its efficacy in pain relief is promising, questions about patterns of use and efficacy warrant further investigation. This study aimed to evaluate long-term MC use patterns, perceived efficacy, and its impact on cognition among patients with chronic musculoskeletal noncancer pain.

Methods: This prospective study included patients who were certified for MC between October 2022 and December 2024. Patients who were certified for MC under Pennsylvania state guidelines for a minimum of one year were tracked, yielding 129 patients for analysis. The patients completed an Inventory of Medical Cannabis Use (IMCU) questionnaire assessing usage patterns, dosage knowledge, efficacy, cognitive effects, and tolerance changes. The responses were collected in a password-protected database.

Results: A total of 77.5% of patients reported using MC daily or near daily. Topical formulations were most frequently used (63.6%). Approximately half of the respondents were uncertain of their exact tetrahydrocannabinol/cannabidiol (THC/CBD) dosage, with a median oral dose of 10 mg recorded among those who provided estimates. High levels of perceived efficacy were reported, with over 93% of respondents agreeing or strongly agreeing that MC improved their primary symptoms. Cognitive and motor effects were minimal for most users, with 72.1% reporting no impact. Furthermore, 79.8% of respondents indicated stable usage patterns over the prior three months, and very few reported a need or external suggestion to reduce MC intake.

Conclusions: Long-term MC use is a stable and well-tolerated option for managing chronic musculoskeletal pain, with high patient-reported efficacy and minimal cognitive impact. These findings support its role in pain management while highlighting the need for further research on optimal dosing and long-term safety.”

https://pubmed.ncbi.nlm.nih.gov/40519367/

https://www.cureus.com/articles/365077-patterns-efficacy-and-cognitive-effects-of-medical-cannabis-use-in-chronic-musculoskeletal-pain-patients#!/

New cannabidiol structure-related terpene N-acyl-hydrazones with potent antinociceptive and anti-inflammatory activity

pubmed logo

“Inflammation is the organism’s protective mechanism to restore cellular and tissue homeostasis. Cannabidiol has been reported for its ability to bind to diverse receptors related to or not related to the endocannabinoid system, with good safety being one of the most promising phytocannabinoids for therapeutical purposes. CBD has shown in vitro and in vivo ability to significantly reduce the production of cytokines and other inflammatory mediators, with an unclear mechanism of action.

Herein, we report the design and synthesis of a novel series of eight terpene N-acylaryl hydrazone analogues and their pharmacological evaluation for potential antioxidant, antinociceptive, and anti-inflammatory properties.

Our results led to the identification of compounds 5a (PQM-242), with significant peripheral and central antinociceptive effects, 5b (PQM-243), and 5g (PQM-248) with antinociceptive activities probably related to the ability of modulation of TRPV1 receptors, and 5c (PQM-244) that seems to have the most promising peripheral antinociceptive profile, showing significant effects on both neurogenic and inflammatory phases of formalin-induced licking test, coupled to potential antioxidant activity.

Overall, our experimental data suggest that the new CBD-based architecture is capable of ensuring peripheral and central antinociceptive effects by different modes of action, with no in vivo toxicity and adequate predicted ADME properties.”

https://pubmed.ncbi.nlm.nih.gov/40521634/

“Several compounds showed similar antinociceptive and anti-inflammatory effects to those described for CBD.”

https://www.tandfonline.com/doi/full/10.1080/17568919.2025.2515821