“Cannabinoids produce a plethora of biological effects, including the modulation of neuronal activity through the activation of CB(1) receptors and of immune responses through the activation of CB(2) receptors. The selective targeting of either of these two receptor subtypes has clear therapeutic value. Recent evidence indicates that some of the cannabinomimetic effects previously thought to be produced through CB(1) and/or CB(2) receptors, be they on neuronal activity, on the vasculature tone or immune responses, still persist despite the pharmacological blockade or genetic ablation of CB(1) and/or CB(2) receptors. This suggests that additional cannabinoid and cannabinoid-like receptors exist. Here we will review this evidence in the context of their therapeutic value and discuss their true belonging to the endocannabinoid signaling system.” http://www.ncbi.nlm.nih.gov/pubmed/19248809
Category Archives: Gastrointestinal Disorders
Cannabinoid signalling regulates inflammation and energy balance: the importance of the brain-gut axis.
Abstract
“Energy balance is controlled by centres of the brain which receive important inputs from the gastrointestinal tract, liver, pancreas, adipose tissue and skeletal muscle, mediated by many different signalling molecules. Obesity occurs when control of energy intake is not matched by the degree of energy expenditure. Obesity is not only a state of disordered energy balance it is also characterized by systemic inflammation. Systemic inflammation is triggered by the leakage of bacterial lipopolysaccharide through changes in intestinal permeability. The endocannabinoid system, consisting of the cannabinoid receptors, endogenous cannabinoid ligands and their biosynthetic and degradative enzymes, plays vital roles in the control of energy balance, the control of intestinal permeability and immunity. In this review we will discuss how the endocannabinoid system, intestinal microbiota and the brain-gut axis are involved in the regulation of energy balance and the development of obesity-associated systemic inflammation. Through direct and indirect actions throughout the body, the endocannabinoid system controls the development of obesity and its inflammatory complications.”
Cannabinoids and the digestive tract.
“In the digestive tract there is evidence for the presence of high levels of endocannabinoids (anandamide and 2-arachidonoylglycerol) and enzymes involved in the synthesis and metabolism of endocannabinoids. Immunohistochemical studies have shown the presence of CB1 receptors on myenteric and submucosal nerve plexuses along the alimentary tract. Pharmacological studies have shown that activation of CB1 receptors produces relaxation of the lower oesophageal sphincter, inhibition of gastric motility and acid secretion, as well as intestinal motility and secretion. In general, CB1-induced inhibition of intestinal motility and secretion is due to reduced acetylcholine release from enteric nerves. Conversely, endocannabinoids stimulate intestinal primary sensory neurons via the vanilloid VR1 receptor, resulting in enteritis and enhanced motility. The endogenous cannabinoid system has been found to be involved in the physiological control of colonic motility and in some pathophysiological states, including paralytic ileus, intestinal inflammation and cholera toxin-induced diarrhoea. Cannabinoids also possess antiemetic effects mediated by activation of central and peripheral CB1 receptors.
Pharmacological modulation of the endogenous cannabinoid system could provide a new therapeutic target for the treatment of a number of gastrointestinal diseases, including nausea and vomiting, gastric ulcers, secretory diarrhoea, paralytic ileus, inflammatory bowel disease, colon cancer and gastro-oesophageal reflux conditions.”
Alternative targets within the endocannabinoid system for future treatment of gastrointestinal diseases
“Alternative targets within the endocannabinoid system for future treatment of gastrointestinal diseases… Many beneficial effects of herbal cannabinoids on gut motility and inflammation have been demonstrated, suggesting a vast potential for these compounds in the treatment of gastrointestinal disorders….endocannabinoid system’ (ECS), a cooperating network of molecules that regulate themetabolism of the body’s own and of exogenously administered cannabinoids. The ECS… offering many potential targets for pharmacological intervention. Of major therapeutic interest are nonpsychoactive cannabinoids that do not directly target cannabinoid receptors but still possess cannabinoid-like properties… promising alternative therapeutic tools to manipulate the ECS.”