Characterization of endocannabinoids and related acylethanolamides in the synovial fluid of dogs with osteoarthritis: a pilot study.

 Image result for bmc veterinary research

“Cannabis-based drugs have been shown to be effective in inflammatory diseases.

A number of endocannabinoids including N- arachidonoylethanolamide (anandamide, AEA) and 2-arachidonyl glycerol (2-AG) with activity at the cannabinoidreceptors (CBR) CBR1 and CBR2, have been identified. Other structurally related endogenous fatty acid compounds such as oleoylethanolamide (OEA) and palmitoyl ethanolamide (PEA) have been identified in biological tissues.

These compounds do not bind to CBR but might be involved in facilitating the actions of directly acting endocannabinoids and thus are commonly termed “entourage” compounds due to their ability to modulate the endocannabinoid system.

The aim of this study was to evaluate the presence of endocannabinoids and entourage compounds in the synovial fluid of dogs with osteoarthritis subjected to arthrotomy of the knee joint. Cytokines and cytology were studied as well.

AEA, 2-AG, OEA and PEA were all present in the synovial fluid of arthritic knees and in the contralateral joints; in addition, a significant increase of OEA and 2AG levels were noted in SF from OA knees when compared to the contralateral joints.

The identification and quantification of endocannabinoids and entourage compounds levels in synovial fluids from dogs with OA of the knee is reported for the first time. Our data are instrumental for future studies involving a greater number of dogs. Cannabinoids represent an emerging and innovative pharmacological tool for the treatment of OA and further studies are warranted to evaluate the effectiveness of cannabinoids in veterinary medicine.”

https://www.ncbi.nlm.nih.gov/pubmed/29110674

“The ECS can be exploited as a potential therapeutic option for OA. We have demonstrated the presence of AEA, 2-AG, OEA and PEA in the SF of dogs with OA. Our data open the avenue to future studies involving a higher number of dogs and aimed at defining the role played by these compounds in OA of the dogs. Both plant-derived and synthetic agonists of CBRs represent an emerging and innovative pharmacological tool for the treatment of OA. ” https://bmcvetres.biomedcentral.com/articles/10.1186/s12917-017-1245-7

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

[Cannabinoid receptor system regulates ion channels and synaptic transmission in retinal cells].

Image result for Sheng Li Xue Bao. journal

“Endocannabinoid receptor system is extensively expressed in the vertebrate retina. There are two types of cannabinoid receptors, CB1 and CB2. Activation of these two receptors by endocannabinoids N-arachidonoylethanolamide (anandamine, AEA) and 2-arachidonyl glycerol (2-AG) regulates multiple neuronal and glial ion channels, thus getting involved in retinal visual information processing. In this review, incorporating our results, we discuss the modulation of cannabinoid CB1 and CB2 receptors on retinal neuronal and glial ion channels and retinal synaptic transmission.”

https://www.ncbi.nlm.nih.gov/pubmed/29063116

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Production of endocannabinoids by activated T cells and B cells modulates inflammation associated with delayed type hypersensitivity.

“Endocannabinoids are endogenous ligands for the cannabinoid (CB) receptors which include anandamide (AEA) and (2-AG). 2-AG has been linked to inflammation due to its elevated expression in animal models of autoimmunity and hypersensitivity.

However, administration of exogenous 2-AG has been shown to suppress inflammation making its precise role unclear. In the current study, we investigated the role of 2-AG following immunization of C57BL/6 (BL6) mice with methylated BSA (mBSA) antigen, which triggers both delayed type hypersensitivity (DTH) and antibody response.

Together, these data show for the first time that activated T and B cells produce 2-AG, which plays a negative regulatory role to decrease DTH via inhibition of T-cell activation and proliferation.

Moreover, these findings suggest that exogenous 2-AG treatment can be used therapeutically in Th1- or Th17-driven disease.”  http://www.ncbi.nlm.nih.gov/pubmed/27064137

“∆9-Tetrahydrocannabinol (THC) is one of the major bioactive cannabinoids derived from the Cannabis sativa plant and is known for its anti-inflammatory properties. Delayed-type hypersensitivity (DTH) is driven by proinflammatory T helper cells including the classic inflammatory Th1 lineage as well as the more recently discovered Th17 lineage. In the current study, we investigated whether THC can alter the induction of Th1/Th17 cells involved in mBSA-induced DTH response… In summary, the current study suggests that THC treatment during DTH response can simultaneously inhibit Th1/Th17 activation via regulation of microRNA (miRNA) expression.• THC treatment inhibits simultaneous Th1/Th17 driven inflammation. • THC treatment corrects DTH-mediated microRNA dysregulation. • THC treatment regulates proinflammatory cytokines and transcription factors.” http://www.ncbi.nlm.nih.gov/pubmed/27038180

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Circulating endocannabinoids and N-acyl-ethanolamides in patients with sleep apnea–specific role of oleoylethanolamide.

“OBJECTIVE:  The endocannabinoid system promotes diverse effects on fat and glucose metabolism as well as on energy balance and sleep regulation. The role of N-acylethanolamides like oleoylethanolamide (OEA) and other endocannabinoids such as anandamide (AEA) and 2-arachidonyl-glycerol (2-AG) has not yet been investigated in patients with sleep apnea.

 

CONCLUSIONS: These results indicate that among the three analyzed fatty acid derivatives, OEA plays a specific role in patients with sleep apnea. Together with animal data, the 2-fold elevation of OEA serum concentrations could be interpreted as a neuroprotective mechanism against chronic oxidative stressors and a mechanism to promote wakefulness in patients with nocturnal sleep deprivation and daytime hypersomnolence.”

http://www.ncbi.nlm.nih.gov/pubmed/20429051

 

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous