Cannabinoid-associated cell death mechanisms in tumor models

“In recent years, cannabinoids (the active components of Cannabis sativa) and their derivatives have received considerable interest due to findings that they can affect the viability and invasiveness of a variety of different cancer cells. Moreover, in addition to their inhibitory effects on tumor growth and migration, angiogenesis and metastasis, the ability of these compounds to induce different pathways of cell death has been highlighted. Here, we review the most recent results generating interest in the field of death mechanisms induced by cannabinoids in cancer cells. In particular, we analyze the pathways triggered by cannabinoids to induce apoptosis or autophagy and investigate the interplay between the two processes. Overall, the results reported here suggest that the exploration of molecular mechanisms induced by cannabinoids in cancer cells can contribute to the development of safe and effective treatments in cancer therapy.”

http://www.ncbi.nlm.nih.gov/pubmed/22614735

Cannabinoids reduce ErbB2-driven breast cancer progression through Akt inhibition

“BACKGROUND:

ErbB2-positive breast cancer is characterized by highly aggressive phenotypes and reduced responsiveness to standard therapies. Although specific ErbB2-targeted therapies have been designed, only a small percentage of patients respond to these treatments and most of them eventually relapse. The existence of this population of particularly aggressive and non-responding or relapsing patients urges the search for novel therapies. The purpose of this study was to determine whether cannabinoids might constitute a new therapeutic tool for the treatment of ErbB2-positive breast tumors. We analyzed their antitumor potential in a well established and clinically relevant model of ErbB2-driven metastatic breast cancer: the MMTV-neu mouse. We also analyzed the expression of cannabinoid targets in a series of 87 human breast tumors.

RESULTS:

Our results show that both Delta9-tetrahydrocannabinol, the most abundant and potent cannabinoid in marijuana, and JWH-133, a non-psychotropic CB2 receptor-selective agonist, reduce tumor growth, tumor number, and the amount/severity of lung metastases in MMTV-neu mice. Histological analyses of the tumors revealed that cannabinoids inhibit cancer cell proliferation, induce cancer cell apoptosis, and impair tumor angiogenesis. Cannabinoid antitumoral action relies, at least partially, on the inhibition of the pro-tumorigenic Akt pathway. We also found that 91% of ErbB2-positive tumors express the non-psychotropic cannabinoid receptor CB2.

CONCLUSIONS:

Taken together, these results provide a strong preclinical evidence for the use of cannabinoid-based therapies for the management of ErbB2-positive breast cancer.”

Cannabinoids inhibit breast tumor growth in vivo and the number of tumors generated per animal.

Cannabinoids inhibit cancer cell proliferation, induce cancer cell apoptosis, and impair tumor angiogenesis in vivo.

Cannabinoids decrease breast cancer metastases in the lungs

In summary, our results, which were obtained in a clinically relevant animal model of ErbB2-positive breast cancer, suggest that these highly aggressive and low responsive tumors could be efficiently treated with non-psychoactive CB2-selective agonists without affecting the surrounding healthy tissue.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2917429/

CANNABIDIOL INHIBITS ANGIOGENESIS BY MULTIPLE MECHANISMS

“Background and purpose: Several studies demonstrated anti-proliferative and pro-apoptotic actions of cannabinoids on several tumours, together with their anti-angiogenic properties. The non-psychoactive cannabinoid cannabidiol (CBD) effectively inhibits in vitro and in vivo the growth of different types of tumours and down-regulates some pro-angiogenic signal produced by glioma cells. As its anti-angiogenic properties have not been thoroughly investigated to date, and given its very favorable pharmacological and toxicological profile, here we evaluated CBD ability to modulate tumour angiogenesis. Experimental approach: We firstly evaluated CBD effect on human umbilical vein endothelial cell (HUVEC) proliferation and viability- through MTT assay and FACS analysis-and in vitro motility-both in a classical Boyden chamber test and in a wound-healing assay. We next investigated CBD effects on different angiogenesis-related proteins released by HUVECs, using an angiogenic Array Kit and an enzyme-linked immunosorbent assay (ELISA) directed at MMP2. Afterwards we evaluated in vitro angiogenesis in treated HUVECs invading a Matrigel layer and in HUVEC spheroids embedded into collagen gels. We further characterized CBD effects using a Matrigel sponge model of in vivo angiogenesis. Key results: CBD induced HUVEC cytostasis without inducing apoptosis, inhibited HUVEC migration, invasion, and sprouting in vitro, and angiogenesis in vivo in matrigel sponges. These effects were associated with down-modulation of several angiogenesis-related molecules. Conclusions and Implications: This study reveals that CBD inhibits angiogenesis by multiple mechanisms. Its dual effect on both tumour and endothelial cells reinforces the hypothesis that CBD could represent a potential effective agent in cancer therapy.”

.http://www.ncbi.nlm.nih.gov/pubmed/22624859