Anti-proliferative and anti-angiogenic effects of CB2R agonist (JWH-133) in non-small lung cancer cells (A549) and human umbilical vein endothelial cells: an in vitro investigation.

 

“Non-small cell lung cancer has one of the highest mortality rates among cancer-suffering patients. It is well known that the unwanted psychotropic effects of cannabinoids (CBs) are mediated via the CB(1) receptor (R), and selective targeting of the CB(2)R would thus avoid side effects in cancer treatment…

the aim of our study was to evaluate the effect of selective CB(2)R agonist, JWH-133, on A549 cells (non-small lung cancer) and human umbilical vein endothelial cells (HUVECs)…

The present study demonstrates the in vitro anti-proliferative and anti-angiogenic potential of CB(2)R agonist, JWH-133, in nonsmall lung cancer cells and HUVECs.

Our results generate a rationale for further in vivo efficacy studies with this compound in preclinical cancer models.”

http://www.ncbi.nlm.nih.gov/pubmed/22578958

Inhibitory effects of cannabinoid CB1 receptor stimulation on tumor growth and metastatic spreading: actions on signals involved in angiogenesis and metastasis.

  “Stimulation of cannabinoid CB1 receptors… inhibits the growth of a rat thyroid cancer cell-derived tumor…  also blocks the growth of tumors… the hypothesis that CB1 receptor stimulation interferes not only with angiogenesis but also with metastatic processes was tested in a widely used model of metastatic infiltration in vivo, the Lewis lung carcinoma… Our findings indicate that CB1 receptor agonists might be used therapeutically to retard tumor growth in vivo by inhibiting at once tumor growth, angiogenesis, and metastasis.”

http://www.ncbi.nlm.nih.gov/pubmed/12958205

Antiangiogenic activity of the endocannabinoid anandamide: correlation to its tumor-suppressor efficacy.

  “Endocannabinoids are now emerging as suppressors of key cell-signaling pathways involved in cancer cell growth, invasion, and metastasis. We have previously observed that the metabolically stable anandamide analog, 2-methyl-2′-F-anandamide (Met-F-AEA) can inhibit the growth of thyroid cancer in vivo. Our hypothesis was that the anti-tumor effect observed could be at least in part ascribed to inhibition of neo-angiogenesis… our results suggest that anandamide could be involved in the control of cancer growth targeting both tumor cell proliferation and the angiogenic stimulation of the vasculature.”

http://www.ncbi.nlm.nih.gov/pubmed/17192847