Cannabidiol Displays Antiepileptiform and Antiseizure Properties In Vitro and In Vivo

“CBD is the major nonpsychoactive component of Cannabis sativa whose structure was first described by Mechoulam and Shvo (1963); CBD has recently attracted renewed interest for its therapeutic potential in a number of disease states. CBD has been proposed to possess anticonvulsive, neuroprotective, and anti-inflammatory properties in humans.”

 “Plant-derived cannabinoids (phytocannabinoids) are compounds with emerging therapeutic potential. Early studies suggested that cannabidiol (CBD) has anticonvulsant properties in animal models and reduced seizure frequency in limited human trials. Here, we examine the antiepileptiform and antiseizure potential of CBD using in vitro electrophysiology and an in vivo animal seizure model…. These findings suggest that CBD acts, potentially in a CB1 receptor-independent manner, to inhibit epileptiform activity in vitro and seizure severity in vivo. Thus, we demonstrate the potential of CBD as a novel antiepileptic drug in the unmet clinical need associated with generalized seizures.”

“In conclusion, our data in separate in vitro models of epileptiform activity and, in particular, the beneficial reductions in seizure severity caused by CBD in an in vivo animal model of generalized seizures suggests that earlier, small-scale clinical trials for CBD in untreated epilepsy warrant urgent renewed investigation.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819831/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Δ⁹-Tetrahydrocannabivarin suppresses in vitro epileptiform and in vivo seizure activity in adult rats.

“PURPOSE:

We assessed the anticonvulsant potential of the phytocannabinoid Δ⁹-tetrahydrocannabivarin (Δ⁹-THCV) by investigating its effects in an in vitro piriform cortex (PC) brain slice model of epileptiform activity, on cannabinoid CB1 receptor radioligand-binding assays and in a generalized seizure model in rats.”

“DISCUSSION:

These data demonstrate that Δ⁹-THCV exerts antiepileptiform and anticonvulsant properties, actions that are consistent with a CB1 receptor-mediated mechanism and suggest possible therapeutic application in the treatment of pathophysiologic hyperexcitability states.”

http://www.ncbi.nlm.nih.gov/pubmed/20196794

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous