Hempseed ( Cannabis sativa) Peptide H3 (IGFLIIWV) Exerts Cholesterol-Lowering Effects in Human Hepatic Cell Line

nutrients-logo

“Hempseed (Cannabis sativa) protein is an important source of bioactive peptides. H3 (IGFLIIWV), a transepithelial transported intestinal peptide obtained from the hydrolysis of hempseed protein with pepsin, carries out antioxidant and anti-inflammatory activities in HepG2 cells. In this study, the main aim was to assess its hypocholesterolemic effects at a cellular level and the mechanisms behind this health-promoting activity. The results showed that peptide H3 inhibited the 3-hydroxy-3-methylglutaryl co-enzyme A reductase (HMGCoAR) activity in vitro in a dose-dependent manner with an IC50 value of 59 μM. Furthermore, the activation of the sterol regulatory element binding proteins (SREBP)-2 transcription factor, followed by the increase of low-density lipoprotein (LDL) receptor (LDLR) protein levels, was observed in human hepatic HepG2 cells treated with peptide H3 at 25 µM. Meanwhile, peptide H3 regulated the intracellular HMGCoAR activity through the increase of its phosphorylation by the activation of AMP-activated protein kinase (AMPK)-pathways. Consequently, the augmentation of the LDLR localized on the cellular membranes led to the improved ability of HepG2 cells to uptake extracellular LDL with a positive effect on cholesterol levels. Unlike the complete hempseed hydrolysate (HP), peptide H3 can reduce the proprotein convertase subtilisin/kexin 9 (PCSK9) protein levels and its secretion in the extracellular environment via the decrease of hepatic nuclear factor 1-α (HNF1-α). Considering all these evidences, H3 may represent a new bioactive peptide to be used for the development of dietary supplements and/or peptidomimetics for cardiovascular disease (CVD) prevention.”

https://pubmed.ncbi.nlm.nih.gov/35565772/

https://www.mdpi.com/2072-6643/14/9/1804

Acute Cannabigerol Administration Lowers Blood Pressure in Mice

“Cannabigerol (CBG) is a cannabinoid compound that is synthesized from Cannabis sativa L. and acts as a substrate for both Δ9-tetraydrocannabinol (Δ9-THC) and cannabidiol (CBD) formation. Given that it does not exhibit psychoactive effects, emerging research has focused on CBG as a potential therapeutic for health conditions including algesia, epilepsy, anxiety, and cancer. While CBG can bind to cannabinoid receptors CB1 and CB2, it has also been described as an agonist at α2-adrenoreceptors (A2-AR), which when activated inhibit the release of norepinephrine from α-adrenergic neurons. This raises the concern that CBG could act at A2-AR to reduce norepinephrine release to cardiovascular end organs, such as the heart and kidneys, causing a reduction in blood pressure. Despite this possibility, there are no reports examining cardiovascular effects of CBG. In this study, we tested the hypothesis that acute CBG administration can lower blood pressure. To test this, six male C57BL/6J mice underwent surgery at 8-10 weeks of age to implant a radiotelemetry probe, which allows for continuous measurement of blood pressure, heart rate and locomotor activity in conscious, freely moving mice. Following 10 days of recovery, baseline measurements were obtained and then mice were randomized to receive intraperitoneal injections of CBG (3.3, 5.6, and 10 mg/kg) and vehicle in a crossover design, with at least one-week washout between treatments. Changes in blood pressure, heart rate, and locomotor activity were measured for two hours post-injection. We found that acute CBG significantly lowered blood pressure compared with vehicle (-12±5 mmHg vehicle vs. -28±2 mmHg at 10 mg/kg CBG; p=0.018), with no apparent dose responsiveness at the doses used in this study (-22±2 mmHg at 3.3 mg/kg CBG; -28±4 at 5.6 mg/kg CBG). The greatest blood pressure reduction was seen at 90-minutes post-CBG administration, which is consistent with reports for peak plasma concentrations of this compound in rodents. The blood pressure lowering effects of CBG occurred in the absence of changes in heart rate or locomotor activity. These overall findings suggest acute CBG may lower blood pressure in phenotypically normal young adult male mice, which may provide caution for the potential of hypotension as an adverse effect of CBG administration. Additional studies are needed to determine if the blood pressure lowering effects of CBG are via an A2-AR mechanism.”

https://pubmed.ncbi.nlm.nih.gov/35555999/

https://faseb.onlinelibrary.wiley.com/doi/10.1096/fasebj.2022.36.S1.0R576

Cannabis sativa extracts protect LDL from Cu 2+-mediated oxidation

figure 2

“Background: Multiple therapeutic properties have been attributed to Cannabis sativa. However, further research is required to unveil the medicinal potential of Cannabis and the relationship between biological activity and chemical profile.

Objectives: The primary objective of this study was to characterize the chemical profile and antioxidant properties of three varieties of Cannabis sativa available in Uruguay during progressive stages of maturation.

Methods: Fresh samples of female inflorescences from three stable Cannabis sativa phenotypes, collected at different time points during the end of the flowering period were analyzed. Chemical characterization of chloroform extracts was performed by 1H-NMR. The antioxidant properties of the cannabis sativa extracts, and pure cannabinoids, were measured in a Cu2+-induced LDL oxidation assay.

Results: The main cannabinoids in the youngest inflorescences were tetrahydrocannabinolic acid (THC-A, 242 ± 62 mg/g) and tetrahydrocannabinol (THC, 7.3 ± 6.5 mg/g). Cannabinoid levels increased more than twice in two of the mature samples. A third sample showed a lower and constant concentration of THC-A and THC (177 ± 25 and 1 ± 1, respectively). The THC-A/THC rich cannabis extracts increased the latency phase of LDL oxidation by a factor of 1.2-3.5 per μg, and slowed down the propagation phase of lipoperoxidation (IC50 1.7-4.6 μg/mL). Hemp, a cannabidiol (CBD, 198 mg/g) and cannabidiolic acid (CBD-A, 92 mg/g) rich variety, also prevented the formation of conjugated dienes during LDL oxidation. In fact, 1 μg of extract was able to stretch the latency phase 3.7 times and also to significantly reduce the steepness of the propagation phase (IC50 of 8 μg/mL). Synthetic THC lengthened the duration of the lag phase by a factor of 21 per μg, while for the propagation phase showed an IC50 ≤ 1 μg/mL. Conversely, THC-A was unable to improve any parameter. Meanwhile, the presence of 1 μg of pure CBD and CBD-A increased the initial latency phase 4.8 and 9.4 times, respectively, but did not have an effect on the propagation phase.

Conclusion: Cannabis whole extracts acted on both phases of lipid oxidation in copper challenged LDL. Those effects were just partially related with the content of cannabinoids and partially recapitulated by isolated pure cannabinoids. Our results support the potentially beneficial effects of cannabis sativa whole extracts on the initial phase of atherosclerosis.”

https://pubmed.ncbi.nlm.nih.gov/33123676/

“Our findings support the beneficial effects of Cannabis sativa extracts on the initial phase of atherosclerosis. Since isolated cannabinoids were less effective preventing the oxidation of LDL, a synergistic effect between the diverse arrange of phytochemicals present in complex extracts is supported, reinforcing the entourage hypothesis and the use of whole medicinal cannabis extracts for therapeutic purposes.”

https://jcannabisresearch.biomedcentral.com/articles/10.1186/s42238-020-00042-0

Vasoprotective Endothelial Effects of Chronic Cannabidiol Treatment and Its Influence on the Endocannabinoid System in Rats with Primary and Secondary Hypertension

“Our study aimed to examine the endothelium (vascular)-protecting effects of chronic cannabidiol (CBD) administration (10 mg/kg once daily for 2 weeks) in aortas and small mesenteric (G3) arteries isolated from deoxycorticosterone-induced hypertensive (DOCA-salt) rats and spontaneously hypertensive rats (SHR). CBD reduced hypertrophy and improved the endothelium-dependent vasodilation in response to acetylcholine in the aortas and G3 of DOCA-salt rats and SHR. The enhancement of vasorelaxation was prevented by the inhibition of nitric oxide (NO) with L-NAME and/or the inhibition of cyclooxygenase (COX) with indomethacin in the aortas and G3 of DOCA-salt and SHR, respectively. The mechanism of the CBD-mediated improvement of endothelial function in hypertensive vessels depends on the vessel diameter and may be associated with its NO-, the intermediate-conductance calcium-activated potassium channel- or NO-, COX-, the intermediate and the small-conductance calcium-activated potassium channels-dependent effect in aortas and G3, respectively. CBD increased the vascular expression of the cannabinoid CB1 and CB2 receptors and aortic levels of endocannabinoids with vasorelaxant properties e.g., anandamide, 2-arachidonoylglycerol and palmitoyl ethanolamide in aortas of DOCA-salt and/or SHR. In conclusion, CBD treatment has vasoprotective effects in hypertensive rats, in a vessel-size- and hypertension-model-independent manner, at least partly via inducing local vascular changes in the endocannabinoid system.”

https://pubmed.ncbi.nlm.nih.gov/34832902/

Cannabidiol-mediated RISK PI3K/AKT and MAPK/ERK pathways decreasing reperfusion myocardial damage

“Myocardial ischemia continues to be the first cause of morbimortality in the world; the definitive treatment is reperfusion; however, this action causes additional damage to ischemic myocardial tissue; this forces to seek therapies of cardioprotection to reduce this additional damage. There are many cardioprotective agents; within these, cannabinoids have shown to have beneficial effects, mainly cannabidiol (CBD). CBD is a non psychoactive cannabinoid. To evaluate the effect in experimental models of CBD in myocardial ischemia reperfusion in rats, twelve-week-old male rats have been used. The animals were divides in 3 groups: control(C), ischemia reperfusion (IR) and CBD pretreatment (1/day/5mg/kg /10days). Langendorff organ isolate studies were performed, and the area of infarction was assessed with triphenyl tetrazolium, in addition to molecular analysis of AT1 and AT2 receptors and Akt and Erk proteins and their phosphorylated forms related to RISK pathways. It was observed that there is an improvement with the use of CBD increasing inotropism and cardiac lusitropism, improving considerably the cardiovascular functionality. These could be related to the reduction of the area of infarction and activation of the AT2 receptor and the RISK pathway with absence of activation of the AT2 receptor (these could relate the reduction of the infarct area and the restoration of cardiovascular function with the activation of the AT2 receptor and the RISK pathway with the absence of activation of the AT2 receptor). The use of cannabinoids was shown to have beneficial effects when used as a treatment for myocardial reperfusion damage.”

https://pubmed.ncbi.nlm.nih.gov/34176244/

Δ 9-Tetrahydrocannabinol (Δ 9-THC) Improves Ischemia/Reperfusion Heart Dysfunction and Might Serve as a Cardioprotective Agent in the Future Treatment

“Background: Ischemia/reperfusion (I/R) is a pivotal mechanism of organ injury during clinical stetting for example for cardiopulmonary bypasses. The generation of reactive oxygen species (ROS) during I/R induces oxidative stress that promotes endothelial dysfunction, DNA dissociation and local inflammation. In turn, those processes induce cytokine release, resulting in damage to cellular structures and cell death. One of the major psychoactive compounds of Cannabis is delta-9-tetrahydrocannabinol (Δ9-THC), which is known as an anti-inflammatory mediator. Our research aimed to test if Δ9-THC may be protective in the treatment of cardiovascular system dysfunction arising from I/R heart injury.

Methods: Two experimental models were used: isolated rat hearts perfused with the Langendorff method and human cardiac myocytes (HCM) culture. Rat hearts and HCM underwent ex vivo/chemical in vitro I/R protocol with/without Δ9-THC treatment. The following parameters were measured: cell metabolic activity, morphology changes, cell damage as lactate dehydrogenase (LDH) activity, ceramide kinase (CERK) activity, ROS level, total antioxidant capacity (TAC) and heart hemodynamic parameters.

Results: Δ9-THC protected the heart, as evidenced by the improved recovery of cardiac function (p < 0.05, N = 3-6). Cells subjected to I/R showed lower cytoplasmic LDH activity, and 10 μM Δ9-THC treatment reduced cell injury and increased LDH content (p = 0.019, N = 6-9). Morphology changes of HCM-spherical shape, vacuolisation of cytoplasm and swollen mitochondria-were inhibited due to Δ9-THC treatment. I/R condition affected cell viability, but 10 μM Δ9-THC decreased the number of dead cells (p = 0.005, N = 6-9). The total level of CERK was lower in the I/R group, reflecting oxidative/nitrosative stress changes. The administration of Δ9-THC effectively increased the production of CERK to the level of aerobic control (p = 0.028, N = 6-9). ROS level was significantly decreased in I/R cells (p = 0.007, N = 6-8), confirming oxidative stress, while administration of 10 μM Δ9-THC enhanced TAC in cardiomyocytes subjected to I/R (p = 0.010, N = 6-8).

Conclusions: Δ9-THC promotes the viability of cardiomyocytes, improves their metabolic activity, decreases cell damage and restores heart mechanical function, serving as a cardioprotective. We proposed the use of Δ9-THC as a cardioprotective drug to be, administered before onset of I/R protocol.”

https://pubmed.ncbi.nlm.nih.gov/35468673/

Marijuana and Myocardial Infarction in the UK Biobank Cohort

“Background: Atrial fibrillation, ventricular tachycardia, acute coronary syndromes, and cardiac arrest have been attributed to marijuana. But the National Academy of Science’s 2017 Report, The Health Effects of Cannabis and Cannabinoids, found limited evidence that acute marijuana smoking is positively associated with an increased risk of acute myocardial infarction, and uncovered no evidence to support or refute associations between any chronic effects of marijuana use and increased risk of myocardial infarct (MI).

Aims: We sought to determine the association of marijuana smoking with MI in the UK Biobank cohort. Because red wine is a mood-altering substance, we compared the effect of marijuana with red wine on MI incidence.

Methods: Our analysis included all subjects with MI. The diagnosis was ascertained using the 10th Revision of the International Classification of Diseases (ICD10 I21). Marijuana was recorded in UKB Category 143, medical conditions, marijuana use. Cigarette smoking information was from UKB Category 100058, smoking. To compare marijuana smoking with the effect of wine drinking we used data from UKB Category 10051, alcohol.

Results: With marijuana use, MI incidence decreased (p < 0.001, two tail Fisher exact test). Red wine was associated with lower MI incidence, although the incidence begins to rise at 11 or more glasses per week (p < 0.001, two tail Fisher exact test). Multivariate analysis was done with logistic regression, MI dependent variable, cigarette pack-years, diabetes type 2, sex, BMI, hypertension, marijuana use, age, red wine consumption, independent variables. Odds ratio (O.R.) 0.844 associated with marijuana use indicates that MI was less likely in marijuana users and was comparable to the effect of red wine (O.R. 0.847).

Conclusion: Marijuana, which has not been shown to have the favorable physiologic effects of red wine on the heart, does reduce MI risk to an extent comparable to red wine. Perhaps both affect the heart by reducing stress.”

https://pubmed.ncbi.nlm.nih.gov/35165641/

Effects of phytocannabinoids on heart rate variability and blood pressure variability in female post-concussion syndrome patients: case series

“Cannabidiol (CBD) can exert neuroprotective effects without being intoxicating, and in combination with Δ9-tetrahydrocannabinol (THC) CBD has shown to protect against THC psychosis. Acute concussion and post-concussion syndrome (PCS) can result in autonomic dysfunction in heart rate variability (HRV), but less information is available on blood pressure variability (BPV). Furthermore, the effects of phytocannabinoids on HRV and BPV in PCS are unknown. The purpose of this study was to observe the influence of daily administration of CBD or a combination of CBD and THC on HRV and BPV parameters in four female PCS participants. Participants completed a seated 5-min rest followed by six breaths-per-minute paced breathing protocol. Data was collected prior to phytocannabinoid intake and continued over 54 to 70 days. High frequency systolic BPV parameter increased every assessment period, unless altered due to external circumstances and symptoms. HRV parameters showed less consistent and varying responses. These results suggest that CBD can help to improve the altered autonomic dysfunction in those with PCS, and that responses to the drug administration was individualized. Double blinded, randomized controlled trials with greater sample sizes are required to better understand the influences of the varying dosages on human physiology and in PCS.”

https://pubmed.ncbi.nlm.nih.gov/34597522/

Hempseed (Cannabis sativa) offers effective alternative over statins in ameliorating hypercholesterolemia associated nephropathy

“A direct link between hypercholesterolemia (HC) and renal pathologies has been established. Statins, the drugs of choice for HC management, have been associated with various side effects and toxicities, including nephropathy and other renal insults. Thus, natural dietary products based-alternative strategies for HC and associated pathologies are being considered.

Objectives: Based on the unique nutritional composition and numerous health benefits of Hempseeds (Cannabis sativa), currently the potential anti-inflammatory and redox modulatory effects of hempseeds lipid extract (HEMP) against HC associated renal damage were evaluated and compared with statins (Simvastatin) in HFD induced experimental model of HC in rats.

Results: Not only, HEMP administration improved the lipid profiles and morphological signs of HC, but it also was safe compared to Simvastatin in terms of hepatic and renal function markers. Further, changes in renal histoarchitecture, biochemical markers of oxidative stress, and expression profiles of lipid metabolism and inflammatory pathways (Cox-1/2, PGDS, PGES) revealed that HEMP positively modulating the redox homeostasis activated the resolution pathways against HC associated renal insults.

Conclusion: The outcomes of the current study indicated HEMP’s ameliorative and therapeutic potential against hypercholesterolemia-associated nephropathies and other systemic effects.”

https://pubmed.ncbi.nlm.nih.gov/33861983/

Clinical Biochemistry


The Endocannabinoid System: A Potential Target for the Treatment of Various Diseases

ijms-logo“The Endocannabinoid System (ECS) is primarily responsible for maintaining homeostasis, a balance in internal environment (temperature, mood, and immune system) and energy input and output in living, biological systems.

In addition to regulating physiological processes, the ECS directly influences anxiety, feeding behaviour/appetite, emotional behaviour, depression, nervous functions, neurogenesis, neuroprotection, reward, cognition, learning, memory, pain sensation, fertility, pregnancy, and pre-and post-natal development.

The ECS is also involved in several pathophysiological diseases such as cancer, cardiovascular diseases, and neurodegenerative diseases. In recent years, genetic and pharmacological manipulation of the ECS has gained significant interest in medicine, research, and drug discovery and development.

The distribution of the components of the ECS system throughout the body, and the physiological/pathophysiological role of the ECS-signalling pathways in many diseases, all offer promising opportunities for the development of novel cannabinergic, cannabimimetic, and cannabinoid-based therapeutic drugs that genetically or pharmacologically modulate the ECS via inhibition of metabolic pathways and/or agonism or antagonism of the receptors of the ECS. This modulation results in the differential expression/activity of the components of the ECS that may be beneficial in the treatment of a number of diseases.

This manuscript in-depth review will investigate the potential of the ECS in the treatment of various diseases, and to put forth the suggestion that many of these secondary metabolites of Cannabis sativa L. (hereafter referred to as “C. sativa L.” or “medical cannabis”), may also have potential as lead compounds in the development of cannabinoid-based pharmaceuticals for a variety of diseases.”

https://pubmed.ncbi.nlm.nih.gov/34502379/

https://www.mdpi.com/1422-0067/22/17/9472

 

“Cannabis sativa L. as a Natural Drug Meeting the Criteria of a Multitarget Approach to Treatment”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7830475/