Cannabinoid Receptor Type 1 Agonist ACEA Protects Neurons from Death and Attenuates Endoplasmic Reticulum Stress-Related Apoptotic Pathway Signaling.

Neurotoxicity Research

“Neurodegeneration is the result of progressive destruction of neurons in the central nervous system, with unknown causes and pathological mechanisms not yet fully elucidated. Several factors contribute to neurodegenerative processes, including neuroinflammation, accumulation of neurotoxic factors, and misfolded proteins in the lumen of the endoplasmic reticulum (ER).

Endocannabinoid signaling has been pointed out as an important modulatory system in several neurodegeneration-related processes, inhibiting the inflammatory response and increasing neuronal survival. Thus, we investigated the presumptive protective effect of the selective cannabinoid type 1 (CB1) receptor agonist) against inflammatory (lipopolysaccharide, LPS) and ER stress (tunicamycin) stimuli in an in vitro neuronal model (Neuro-2a neuroblastoma cells). Cell viability analysis revealed that ACEA was able to protect against cell death induced by LPS and tunicamycin.

This neuroprotective effect occurs via the CB1 receptor in the inflammation process and via the transient receptor potential of vanilloid type-1 (TRPV1) channel in ER stress. Furthermore, the immunoblotting analyses indicated that the neuroprotective effect of ACEA seems to involve the modulation of eukaryotic initiation factor 2 (eIF2α), transcription factor C/EBP homologous protein (CHOP), and caspase 12, as well as the survival/death p44/42 MAPK, ERK1/2-related signaling pathways.

Together, these data suggest that the endocannabinoid system is a potential therapeutic target in neurodegenerative processes, especially in ER-related neurodegenerative diseases.”

https://www.ncbi.nlm.nih.gov/pubmed/29134561

https://link.springer.com/article/10.1007%2Fs12640-017-9839-1

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The Role of BK Channels in Antiseizure Action of the CB1 Receptor Agonist ACEA in Maximal Electroshock and Pentylenetetrazole Models of Seizure in Mice.

Image result for Iran J Pharm Res.

“The anticonvulsant effect of cannabinoid compound has been shown in various models of seizure. On the other hand, there are controversial findings about the role of large conductance calcium-activated potassium (BK) channels in the pathogenesis of epilepsy. Also, there is no data regarding the effect of co-administration of cannabinoid type 1 (CB1) receptor agonists and BK channels antagonists in the acute models of seizure in mice.

In this study, the effect of arachidonyl-2′-chloroethylamide (ACEA), a CB1 receptor agonist, and a BK channel antagonist, paxilline, either alone or in combination was investigated.

Both pentylenetetrazole (PTZ) and maximal electroshock (MES) acute models of seizure were used to evaluate the protective effects of drugs. Mice were randomly selected in different groups: (i) control group; (ii) groups that received different doses of either paxilline or ACEA; and (iii) groups that received combinations of ACEA and paxillin at different doses. In MES model, prevention of hindlimb tonic extension (HLTE) was considered as protective effect. In PTZ model, the required dose of PTZ (mg/kg) to induce tonic-clonic seizure with loss of righting reflex was considered as seizure threshold. In PTZ model, while administration of ACEA per se (5 and 10 mg/kg) caused protective effect against seizure; however, co-administration of ACEA and ineffective doses of paxilline attenuated the antiseizure effects of paxilline. In MES model, while pretreatment by ACEA showed protective effects against seizure; however, co-administration of paxilline and ACEA caused an antagonistic interaction for their antiseizure properties.

Our results showed a protective effect of ACEA in both PTZ and MES acute models of seizure. This effect was attenuated by co-administration with paxilline, suggesting the involvement of BK channels in antiseizure activity of ACEA.”

https://www.ncbi.nlm.nih.gov/pubmed/28979317

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous