Differential effectiveness of selected non-psychotropic phytocannabinoids on human sebocyte functions implicates their introduction in dry/seborrheic skin and acne treatment.

“Acne is a common skin disease characterized by elevated sebum production and inflammation of the sebaceous glands.

We have previously shown that a non-psychotropic phytocannabinoid ((-)-cannabidiol [CBD]) exerted complex anti-acne effects by normalizing “pro-acne agents”-induced excessive sebaceous lipid production, reducing proliferation and alleviating inflammation in human SZ95 sebocytes.

Therefore, in the current study we aimed to explore the putative anti-acne effects of further non-psychotropic phytocannabinoids ((-)-cannabichromene [CBC], (-)-cannabidivarin [CBDV], (-)-cannabigerol [CBG], (-)-cannabigerovarin [CBGV] and (-)-Δ9 -tetrahydrocannabivarin [THCV]).

Viability and proliferation of human SZ95 sebocytes were investigated by MTT- and CyQUANT-assays; cell death and lipid synthesis were monitored by DilC1 (5)-SYTOX Green labelling and Nile Red staining, respectively. Inflammatory responses were investigated by monitoring expressions of selected cytokines upon lipopolysaccharide treatment (RT-qPCR, ELISA). Up to 10 μM, the phytocannabinoids only negligibly altered viability of the sebocytes, whereas high doses (≥50 μM) induced apoptosis.

Interestingly, basal sebaceous lipid synthesis was differentially modulated by the substances: CBC and THCV suppressed it, CBDV had only minor effects, whereas CBG and CBGV increased it.

Importantly, CBC, CBDV and THCV significantly reduced arachidonic acid (AA)-induced “acne-like” lipogenesis.

Moreover, THCV suppressed proliferation, and all phytocannabinoids exerted remarkable anti-inflammatory actions.

Our data suggest that CBG and CBGV may have potential in the treatment of dry-skin syndrome, whereas CBC, CBDV and especially THCV show promise to become highly efficient, novel anti-acne agents.

Moreover, based on their remarkable anti-inflammatory actions, phytocannabinoids could be efficient, yet safe novel tools in the management of cutaneous inflammations.”

http://www.ncbi.nlm.nih.gov/pubmed/27094344

http://www.thctotalhealthcare.com/category/acne/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The plant cannabinoid Delta9-tetrahydrocannabivarin can decrease signs of inflammation and inflammatory pain in mice.

An external file that holds a picture, illustration, etc.<br /><br />
Object name is bph0160-0677-f1.jpg

“The phytocannabinoid, Delta(9)-tetrahydrocannabivarin (THCV), can block cannabinoid CB(1) receptors… THCV can activate CB(2) receptors… THCV can activate CB2 receptors and decrease signs of inflammation and inflammatory pain in mice partly via CB1 and/or CB2 receptor activation…

Because there is evidence that THCV can behave as a CB1 receptor antagonist in vivo, it would also be of interest to explore the possibility that this compound can suppress unwanted symptoms in animal models of disorders in which symptoms can be ameliorated by a combination of CB2 receptor activation and CB1 receptor blockade…”  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931567/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous