Cannabinoid receptor 1 binding activity and quantitative analysis of Cannabis sativa L. smoke and vapor.

cpb

“Cannabis sativa L. (cannabis) extracts, vapor produced by the Volcano vaporizer and smoke made from burning cannabis joints were analyzed by GC-flame ionization detecter (FID), GC-MS and HPLC. Three different medicinal cannabis varieties were investigated Bedrocan, Bedrobinol and Bediol.

Cannabinoids plus other components such as terpenoids and pyrolytic by-products were identified and quantified in all samples. Cannabis vapor and smoke was tested for cannabinoid receptor 1 (CB1) binding activity and compared to pure Delta(9)-tetrahydrocannabinol (Delta(9)-THC).

The top five major compounds in Bedrocan extracts were Delta(9)-THC, cannabigerol (CBG), terpinolene, myrcene, and cis-ocimene in Bedrobinol Delta(9)-THC, myrcene, CBG, cannabichromene (CBC), and camphene in Bediol cannabidiol (CBD), Delta(9)-THC, myrcene, CBC, and CBG.

The major components in Bedrocan vapor (>1.0 mg/g) were Delta(9)-THC, terpinolene, myrcene, CBG, cis-ocimene and CBD in Bedrobinol Delta(9)-THC, myrcene and CBD in Bediol CBD, Delta(9)-THC, myrcene, CBC and terpinolene.

The major components in Bedrocan smoke (>1.0 mg/g) were Delta(9)-THC, cannabinol (CBN), terpinolene, CBG, myrcene and cis-ocimene in Bedrobinol Delta(9)-THC, CBN and myrcene in Bediol CBD, Delta(9)-THC, CBN, myrcene, CBC and terpinolene.

There was no statistically significant difference between CB1 binding of pure Delta(9)-THC compared to cannabis smoke and vapor at an equivalent concentration of Delta(9)-THC.”

http://www.ncbi.nlm.nih.gov/pubmed/20118579

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Differential effectiveness of selected non-psychotropic phytocannabinoids on human sebocyte functions implicates their introduction in dry/seborrheic skin and acne treatment.

“Acne is a common skin disease characterized by elevated sebum production and inflammation of the sebaceous glands.

We have previously shown that a non-psychotropic phytocannabinoid ((-)-cannabidiol [CBD]) exerted complex anti-acne effects by normalizing “pro-acne agents”-induced excessive sebaceous lipid production, reducing proliferation and alleviating inflammation in human SZ95 sebocytes.

Therefore, in the current study we aimed to explore the putative anti-acne effects of further non-psychotropic phytocannabinoids ((-)-cannabichromene [CBC], (-)-cannabidivarin [CBDV], (-)-cannabigerol [CBG], (-)-cannabigerovarin [CBGV] and (-)-Δ9 -tetrahydrocannabivarin [THCV]).

Viability and proliferation of human SZ95 sebocytes were investigated by MTT- and CyQUANT-assays; cell death and lipid synthesis were monitored by DilC1 (5)-SYTOX Green labelling and Nile Red staining, respectively. Inflammatory responses were investigated by monitoring expressions of selected cytokines upon lipopolysaccharide treatment (RT-qPCR, ELISA). Up to 10 μM, the phytocannabinoids only negligibly altered viability of the sebocytes, whereas high doses (≥50 μM) induced apoptosis.

Interestingly, basal sebaceous lipid synthesis was differentially modulated by the substances: CBC and THCV suppressed it, CBDV had only minor effects, whereas CBG and CBGV increased it.

Importantly, CBC, CBDV and THCV significantly reduced arachidonic acid (AA)-induced “acne-like” lipogenesis.

Moreover, THCV suppressed proliferation, and all phytocannabinoids exerted remarkable anti-inflammatory actions.

Our data suggest that CBG and CBGV may have potential in the treatment of dry-skin syndrome, whereas CBC, CBDV and especially THCV show promise to become highly efficient, novel anti-acne agents.

Moreover, based on their remarkable anti-inflammatory actions, phytocannabinoids could be efficient, yet safe novel tools in the management of cutaneous inflammations.”

http://www.ncbi.nlm.nih.gov/pubmed/27094344

http://www.thctotalhealthcare.com/category/acne/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Determination of 11 Cannabinoids in Biomass and Extracts of Different Varieties of Cannabis Using High-Performance Liquid Chromatography.

“An HPLC single-laboratory validation was performed for the detection and quantification of the 11 major cannabinoids in most cannabis varieties, namely, cannabidiolic acid (CBDA), cannabigerolic acid (CBGA), cannabigerol (CBG), cannabidiol (CBD), tetrahydrocannabivarin (THCV), cannabinol (CBN), Δ9-trans-tetrahydrocannabinol (Δ9-THC), Δ8- trans-tetrahydrocannabinol (Δ8-THC), cannabicyclol (CBL), cannabichromene (CBC), and Δ9-tetrahydrocannabinolic acid-A (THCAA). The analysis was carried out on the biomass and extracts of these varieties. Methanol-chloroform (9:1, v/v) was used for extraction, 4-androstene-3,17-dione was used as the internal standard, and separation was achieved in 22.2 min on a C18 column using a two- step gradient elution. The method was validated for the 11 cannabinoids. The concentration-response relationship of the method indicated a linear relationship between the concentration and peak area with r2 values of >0.99 for all 11 cannabinoids. Method accuracy was determined through a spike study, and recovery ranged from 89.7 to 105.5% with an RSD of 0.19 to 6.32% for CBDA, CBD, THCV, CBN, Δ9-THC, CBL, CBC, and THCAA; recovery was 84.7, 84.2, and 67.7% for the minor constituents, CBGA, CBG, and Δ8-THC, respectively, with an RSD of 2.58 to 4.96%. The validated method is simple, sensitive, and reproducible and is therefore suitable for the detection and quantification of these cannabinoids in different types of cannabis plant materials.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous