Δ9-tetrahydrocannabivarin impairs epithelial calcium transport through inhibition of TRPV5 and TRPV6.

 Pharmacological Research

“Compounds extracted from the cannabis plant, including the psychoactive Δ9-tetrahydrocannabinol (THC) and related phytocannabinoids, evoke multiple diverse biological actions as ligands of the G protein-coupled cannabinoid receptors CB1 and CB2. In addition, there is increasing evidence that phytocannabinoids also have non-CB targets, including several ion channels of the transient receptor potential superfamily.

We investigated the effects of six non-THC phytocannabinoids on the epithelial calcium channels TRPV5 and TRPV6, and found that one of them, Δ9-tetrahydrocannabivarin (THCV), exerted a strong and concentration-dependent inhibitory effect on mammalian TRPV5 and TRPV6 and on the single zebrafish orthologue drTRPV5/6. Moreover, THCV attenuated the drTRPV5/6-dependent ossification in zebrafish embryos in vivo. Oppositely, 11-hydroxy-THCV (THCV-OH), a product of THCV metabolism in mammals, stimulated drTRPV5/6-mediated Ca2+ uptake and ossification.

These results identify the epithelial calcium channels TRPV5 and TRPV6 as novel targets of phytocannabinoids, and suggest that THCV-containing products may modulate TRPV5- and TRPV6-dependent epithelial calcium transport.”

https://www.ncbi.nlm.nih.gov/pubmed/30170189

https://linkinghub.elsevier.com/retrieve/pii/S1043661818311095

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Pure Δ9-tetrahydrocannabivarin and a Cannabis sativa extract with high content in Δ9-tetrahydrocannabivarin inhibit nitrite production in murine peritoneal macrophages.

“Historical and scientific evidence suggests that Cannabis use has immunomodulatory and anti-inflammatory effects.

We have here investigated the effect of the non-psychotropic phytocannabinoid Δ9-tetrahydrocannabivarin (THCV) and of a Cannabis sativa extract with high (64.8%) content in THCV (THCV-BDS) on nitric oxide (NO) production, and on cannabinoid and transient receptor potential (TRP) channel expression in lipopolysaccharide (LPS)-stimulated murine peritoneal macrophages.

THCV-BDS and THCV exhibited similar affinity in radioligand binding assays for CB1 and CB2 receptors, and inhibited, via CB2 but not CB1 cannabinoid receptors, nitrite production evoked by LPS in peritoneal macrophages.

THCV down-regulated the over-expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and interleukin 1β (IL-1β) proteins induced by LPS.

Furthermore, THCV counteracted LPS-induced up-regulation of CB1 receptors, without affecting the changes in CB2, TRPV2 or TRPV4 mRNA expression caused by LPS. Other TRP channels, namely, TRPA1, TRPV1, TRPV3 and TRPM8 were poorly expressed or undetectable in both unstimulated and LPS-challenged macrophages.

It is concluded that THCV – via CB2 receptor activation – inhibits nitrite production in macrophages. The effect of this phytocannabinoid was associated with a down-regulation of CB1, but not CB2 or TRP channel mRNA expression.”

http://www.ncbi.nlm.nih.gov/pubmed/27498155

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Determination of 11 Cannabinoids in Biomass and Extracts of Different Varieties of Cannabis Using High-Performance Liquid Chromatography.

“An HPLC single-laboratory validation was performed for the detection and quantification of the 11 major cannabinoids in most cannabis varieties, namely, cannabidiolic acid (CBDA), cannabigerolic acid (CBGA), cannabigerol (CBG), cannabidiol (CBD), tetrahydrocannabivarin (THCV), cannabinol (CBN), Δ9-trans-tetrahydrocannabinol (Δ9-THC), Δ8- trans-tetrahydrocannabinol (Δ8-THC), cannabicyclol (CBL), cannabichromene (CBC), and Δ9-tetrahydrocannabinolic acid-A (THCAA). The analysis was carried out on the biomass and extracts of these varieties. Methanol-chloroform (9:1, v/v) was used for extraction, 4-androstene-3,17-dione was used as the internal standard, and separation was achieved in 22.2 min on a C18 column using a two- step gradient elution. The method was validated for the 11 cannabinoids. The concentration-response relationship of the method indicated a linear relationship between the concentration and peak area with r2 values of >0.99 for all 11 cannabinoids. Method accuracy was determined through a spike study, and recovery ranged from 89.7 to 105.5% with an RSD of 0.19 to 6.32% for CBDA, CBD, THCV, CBN, Δ9-THC, CBL, CBC, and THCAA; recovery was 84.7, 84.2, and 67.7% for the minor constituents, CBGA, CBG, and Δ8-THC, respectively, with an RSD of 2.58 to 4.96%. The validated method is simple, sensitive, and reproducible and is therefore suitable for the detection and quantification of these cannabinoids in different types of cannabis plant materials.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Tetrahydrocannabivarin (THCv) reduces Default Mode Network and increases Executive Control Network Resting State Functional Connectivity in Healthy Volunteers.

“The cannabinoid CB1 Neutral Antagonist Tetrahydrocannabivarin (THCv) has been suggested as a possible treatment for obesity but without the depressogenic side-effects of inverse antagonists such as Rimonabant.

Our findings are the first to show that treatment with the CB1 neutral antagonist THCv decreases resting state functional connectivity in the Default Mode network and increases connectivity in the Cognitive Control network and Dorsal Visual Stream network.

This effect profile suggests possible therapeutic activity of THCv for obesity where functional connectivity has been found to be altered in these regions.”

http://www.ncbi.nlm.nih.gov/pubmed/26362774

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous