Circulating levels of endocannabinoids respond acutely to voluntary exercise, are altered in mice selectively bred for high voluntary wheel running, and differ between the sexes.

Image result for Physiol Behav.

“The endocannabinoid system serves many physiological roles, including in the regulation of energy balance, food reward, and voluntary locomotion.

Signaling at the cannabinoid type 1 receptor has been specifically implicated in motivation for rodent voluntary exercise on wheels.

We studied four replicate lines of high runner (HR) mice that have been selectively bred for 81 generations based on average number of wheel revolutions on days five and six of a six-day period of wheel access.

Our results suggest that voluntary exercise alters circulating levels of endocannabinoids, and further demonstrate that selective breeding for voluntary exercise is associated with evolutionary changes in the endocannabinoid system.”

https://www.ncbi.nlm.nih.gov/pubmed/28017680

“Exercise activates the endocannabinoid system.”  https://www.ncbi.nlm.nih.gov/pubmed/14625449

The arguments for and against cannabinoids application in glaucomatous retinopathy.

Image result for Biomedicine & Pharmacotherapy

“Glaucoma represents several optic neuropathies leading to irreversible blindness through progressive retinal ganglion cell (RGC) loss. Reduction of intraocular pressure (IOP) is known as the only modifiable factor in the treatment of this disorder.

Application of exogenous cannabinoids to lower IOP has attracted attention of scientists as potential agents for the treatment of glaucoma.

Accordingly, neuroprotective effect of these agents has been recently described through modulation of endocannabinoid system in the eye.

In the present work, pertinent information regarding ocular endocannabinoid system, mechanism of exogenous cannabinoids interaction with the ocular endocannabinoid system to reduce IOP, and neuroprotection property of cannabinoids will be discussed according to current scientific literature.

In addition to experimental studies, bioavailability of cannabinoids, clinical surveys, and adverse effects of application of cannabinoids in glaucoma will be reviewed.”

https://www.ncbi.nlm.nih.gov/pubmed/28027538

Identification of an endocannabinoid system in the rat pars tuberalis-a possible interface in the hypothalamic-pituitary-adrenal system?

Image result for Cell Tissue Res.

“Endocannabinoids (ECs) are ubiquitous endogenous lipid derivatives and play an important role in intercellular communication either in an autocrine/paracrine or in an endocrine fashion. Recently, an intrinsic EC system has been discovered in the hypophysial pars tuberalis (PT) of hamsters and humans. In hamsters, this EC system is under photoperiodic control and appears to influence the secretion of hormones such as prolactin from the adenohypophysis. We investigate the EC system in the PT of the rat, a frequently used species in endocrine research.

By means of immunocytochemistry, enzymes involved in EC biosynthesis, e.g., N-arachidonoyl-phosphatidylethanolamine-phospholipase D (NAPE-PLD) and diacylglycerol lipase α (DAGLα) and enzymes involved in EC degradation, e.g., fatty acid amide hydrolase (FAAH) and cyclooxygenase-2 (COX-2), were demonstrated in PT cells of the rat. Immunoreactions (IR) for FAAH and for the cannabinoid receptor CB1 were observed in corticotrope cells of the rat adenohypophysis; these cells were identified by antibodies against proopiomelanocortin (POMC) or adrenocorticotrophic hormone (ACTH). In the outer zone of the median eminence, numerous nerve fibers and terminals displayed CB1 IR. The majority of these were also immunolabeled by an antibody against corticotropin-releasing factor (CRF).

These results suggest that the EC system at the hypothalamo-hypophysial interface affects both the CRF-containing nerve fibers and the corticotrope cells in the adenohypophysis. Our data give rise to the hypothesis that, in addition to its well-known role in the reproductive axis, the PT might influence adrenal functions and, thus, the stress response and immune system.”

https://www.ncbi.nlm.nih.gov/pubmed/27999963

Synergistic attenuation of chronic pain using mu opioid and cannabinoid receptor 2 agonists.

Image result for neuropharmacology journal

“The misuse of prescription opiates is on the rise with combination therapies (e.g. acetaminophen or NSAIDs) resulting in severe liver and kidney damage. In recent years, cannabinoid receptors have been identified as potential modulators of pain and rewarding behaviors associated with cocaine, nicotine and ethanol in preclinical models. Yet, few studies have identified whether mu opioid agonists and CB2 agonists act synergistically to inhibit chronic pain while reducing unwanted side effects including reward liability.

We determined if analgesic synergy exists between the mu-opioid agonist morphine and the selective CB2 agonist, JWH015, in rodent models of acute and chronic inflammatory, post-operative, and neuropathic pain using isobolographic analysis. We also investigated if the MOR-CB2 agonist combination decreased morphine-induced conditioned place preference (CPP) and slowing of gastrointestinal transit. Co-administration of morphine with JWH015 synergistically inhibited preclinical inflammatory, post-operative and neuropathic-pain in a dose- and time-dependent manner; no synergy was observed for nociceptive pain. Opioid-induced side effects of impaired gastrointestinal transit and CPP were significantly reduced in the presence of JWH015.

Here we show that MOR + CB2 agonism results in a significant synergistic inhibition of preclinical pain while significantly reducing opioid-induced unwanted side effects.

The opioid sparing effect of CB2 receptor agonism strongly supports the advancement of a MOR-CB2 agonist combinatorial pain therapy for clinical trials.”

https://www.ncbi.nlm.nih.gov/pubmed/28007501

Cannabinoid receptors on peripheral leukocytes from patients with schizophrenia: Evidence for defective immunomodulatory mechanisms.

Image result for journal of psychiatric research

“These results suggest a defective endocannabinoid system-mediated immunomodulation in patients with schizophrenia.”

https://www.ncbi.nlm.nih.gov/pubmed/28011441

http://www.thctotalhealthcare.com/category/schizophrenia/

Cannabinoid 2 Receptor Agonist Improves Systemic Sensitivity to Insulin in High-Fat Diet/Streptozotocin-Induced Diabetic Mice.

Image result for cellular physiology and biochemistry

“The endocannabinoid signalling (ECS) system has been known to regulate glucose homeostasis.

Previous studies have suggested that the cannabinoid 2 (CB2) receptor may play a regulatory role on insulin secretion, immune modulation and insulin resistance.

Given that diabetes and insulin resistance are attributable to elevated inflammatory tone, we investigated the role of CB2 receptor on glucose tolerance and insulin sensitivity in high-fat diet (HFD)/streptozotocin (STZ)-induced mice.

Our data suggest a lipolytic role of SER601 in HFD/STZ-induced diabetic mice, which results in significant improvement of systemic insulin sensitivity.

Thus, the CB2 receptor may be considered a promising target for therapeutic development against insulin resistance and obesity-related diabetes.”

https://www.ncbi.nlm.nih.gov/pubmed/27960161

Fetal Syndrome of Endocannabinoid Deficiency (FSECD) In Maternal Obesity.

Image result for Med Hypotheses

“The theory of a fetal origin of adult diseases links many pathological conditions to very early life events and is known as a “developmental programming” phenomenon. The mechanisms of this phenomenon are not quite understood and have been explained by inflammation, stress, etc. In particular the epidemic of obesity, with more than 64% of women being overweight or obese, has been associated with conditions in later life such as mental disorders, diabetes, asthma, and irritable bowel syndrome.

Interestingly, these diseases were classified a decade ago as Clinical Syndrome of Endocannabinoid Deficiency (CECD), which was first described by Russo in 2004.

Cannabinoids have been used for the treatment of chronic pain for millenniums and act through the mechanism of “kick-starting” the components of the endogenous cannabinoid system (ECS).

ECS is a pharmacological target for the treatment of obesity, inflammation, cardiovascular and neuronal damage, and pain.

We hypothesize that the deteriorating effect of maternal obesity on offspring health is explained by the mechanism of Fetal Syndrome of Endocannabinoid Deficiency (FSECD), which accompanies maternal obesity. Here we provide support for this hypothesis.”

https://www.ncbi.nlm.nih.gov/pubmed/27959272

Compensatory activation of cannabinoid CB2 receptor inhibition of GABA release in the rostral ventromedial medulla (RVM) in inflammatory pain.

Image result for J Neurosci

“The rostral ventromedial medulla (RVM) is a relay in the descending pain modulatory system and an important site of endocannabinoid modulation of pain.

These studies demonstrate that endocannabinoid signaling to CB1- and CB2-receptors in adult RVM is altered in persistent inflammation.

The emergence of CB2 receptor function in the RVM provides additional rationale for the development of CB2 receptor-selective agonists as useful therapeutics for chronic inflammatory pain.”

https://www.ncbi.nlm.nih.gov/pubmed/27940994

Tamoxifen Isomers and Metabolites Exhibit Distinct Affinity and Activity at Cannabinoid Receptors: Potential Scaffold for Drug Development.

Image result for plos one

“Tamoxifen (Tam) is a selective estrogen receptor (ER) modulator (SERM) that is an essential drug to treat ER-positive breast cancer. Aside from known actions at ERs, recent studies have suggested that some SERMs like Tam also exhibit novel activity at cannabinoidsubtype 1 and 2 receptors (CB1R and CB2Rs).

Collectively, these results suggest that the SERMs Tam, 4OHT and End elicit ER-independent actions via CBRs in an isomer-specific manner.

As such, this novel structural scaffold might be used to develop therapeutically useful drugs for treatment of a variety of diseases mediated via CBRs.”

From adolescent to elder rats: Motivation for palatable food and cannabinoids receptors.

Image result for Developmental Neurobiology

“To analyze motivation, food self-administration and decision-making was evaluated in adolescent, adult and aged rats.

Adolescent rats exhibited low expression of CB1R in the NAcc and low expression of both CB1R and CB2R in the PFC compared to adult and aged rats.

Adolescent rats display higher motivation for palatable food and an indiscriminate seeking behavior suggesting involvement of both homeostatic and hedonic systems in their decision-making processes.”

https://www.ncbi.nlm.nih.gov/pubmed/27935269