Activation of cannabinoid CB1 and CB2 receptors suppresses neuropathic nociception evoked by the chemotherapeutic agent vincristine in rats.

“BACKGROUND AND PURPOSE:

The ability of cannabinoids to suppress mechanical hypersensitivity (mechanical allodynia) induced by treatment with the chemotherapeutic agent vincristine was evaluated in rats. Sites of action were subsequently identified.

CONCLUSIONS AND IMPLICATIONS:

Cannabinoids suppress the maintenance of vincristine-induced mechanical allodynia through activation of CB1 and CB2 receptors. These anti-allodynic effects are mediated, at least in part, at the level of the spinal cord.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2190028/

Selective activation of cannabinoid CB2 receptors suppresses neuropathic nociception induced by treatment with the chemotherapeutic agent paclitaxel in rats.

“Activation of cannabinoid CB(2) receptors suppresses neuropathic pain induced by traumatic nerve injury. The present studies were conducted to evaluate the efficacy of cannabinoid CB(2) receptor activation in suppressing painful peripheral neuropathy evoked by chemotherapeutic treatment with the antitumor agent paclitaxel…

 Our data suggest that cannabinoid CB(2) receptors may be important therapeutic targets for the treatment of chemotherapy-evoked neuropathy.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2682949/

Selective activation of cannabinoid CB2 receptors suppresses hyperalgesia evoked by intradermal capsaicin.

“The present studies were conducted to test the hypothesis that activation of peripheral cannabinoid CB(2) receptors would suppress hyperalgesia evoked by intradermal administration of capsaicin, the pungent ingredient in hot chili peppers.

These data provide evidence that actions at cannabinoid CB(2) receptors are sufficient to normalize nociceptive thresholds and produce antinociception in persistent pain states.”

http://jpet.aspetjournals.org/content/308/2/446.lo

Activation of peripheral cannabinoid CB1 and CB2 receptors suppresses the maintenance of inflammatory nociception: a comparative analysis.

“Background and Purpose:

Effects of locally administered agonists and antagonists for cannabinoid CB1 and CB2 receptors on mechanical and thermal hypersensitivity were compared after the establishment of chronic inflammation.

Conclusions and Implications:

Cannabinoids act locally through distinct CB1 and CB2 mechanisms to suppress mechanical hypersensitivity after the establishment of chronic inflammation, at doses that produced modest changes in thermal hyperalgesia. Additive antihyperalgesic effects were observed following prophylactic co-administration of the CB1– and CB2-selective agonists. Our results suggest that peripheral cannabinoid antihyperalgesic actions may be exploited for treatment of inflammatory pain states.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2042894/

Targeting cannabinoid agonists for inflammatory and neuropathic pain.

Abstract

“The cannabinoid receptors CB(1) and CB(2) are class A G-protein-coupled receptors. It is well known that cannabinoid receptor agonists produce relief of pain in a variety of animal models by interacting with cannabinoid receptors. CB(1) receptors are located centrally and peripherally, whereas CB(2) receptors are expressed primarily on immune cells and tissues. A large body of preclinical data supports the hypothesis that either CB(2)-selective agonists or CB(1) agonists acting at peripheral sites, or with limited CNS exposure, will inhibit pain and neuroinflammation without side effects within the CNS. There has been a growing interest in developing cannabinoid agonists. Many new cannabinoid ligands have been synthesized and studied covering a wide variety of novel structural scaffolds. This review focuses on the present development of cannabinoid agonists with an emphasis on selective CB(2) agonists and peripherally restricted CB(1) or CB(1)/CB(2) dual agonists for treatment of inflammatory and neuropathic pain.”

http://www.ncbi.nlm.nih.gov/pubmed/17594182

Cannabinoid receptors and pain.

Abstract

“Mammalian tissues contain at least two types of cannabinoid receptor, CB(1) and CB(2), both coupled to G proteins. CB(1) receptors are expressed mainly by neurones of the central and peripheral nervous system whereas CB(2) receptors occur centrally and peripherally in certain non-neuronal tissues, particularly in immune cells. The existence of endogenous ligands for cannabinoid receptors has also been demonstrated. The discovery of this ‘endocannabinoid system’ has prompted the development of a range of novel cannabinoid receptor agonists and antagonists, including several that show marked selectivity for CB(1) or CB(2) receptors. It has also been paralleled by a renewed interest in cannabinoid-induced antinociception. This review summarizes current knowledge about the ability of cannabinoids to produce antinociception in animal models of acute pain as well as about the ability of these drugs to suppress signs of tonic pain induced in animals by nerve damage or by the injection of an inflammatory agent. Particular attention is paid to the types of pain against which cannabinoids may be effective, the distribution pattern of cannabinoid receptors in central and peripheral pain pathways and the part that these receptors play in cannabinoid-induced antinociception. The possibility that antinociception can be mediated by cannabinoid receptors other than CB(1) and CB(2) receptors, for example CB(2)-like receptors, is also discussed as is the evidence firstly that one endogenous cannabinoid, anandamide, produces antinociception through mechanisms that differ from those of other types of cannabinoid, for example by acting on vanilloid receptors, and secondly that the endocannabinoid system has physiological and/or pathophysiological roles in the modulation of pain.”

http://www.ncbi.nlm.nih.gov/pubmed/11164622

Cannabinoid type 2 receptor as a target for chronic – pain.

Abstract

“Availability of selective pharmacological tools enabled a great advance of our knowledge of cannabinoid receptor 2 (CB2) role in pathophysiology. In particular CB2 emerged as an interesting target for chronic pain treatment as demonstrated by several studies on inflammatory and neuropathic preclinal pain models. The mechanisms at the basis of CB2-mediated analgesia are still controversial but data are pointing out in two main directions: an effect on inflammatory cells and/or an action on nociceptors and spinal cord relay centers. In this review will be described the second messenger pathways activated by CB2 agonists, the data underpinning the analgesic profile of CB2 selective agonists and the mechanisms invoked to explain their analgesic action. Finally the ongoing clinical trials and the potential issues for the development of a CB2 agonist drug will be examined.”

http://www.ncbi.nlm.nih.gov/pubmed/19149657

Cannabinoid CB2 receptor-mediated anti-nociception in models of acute and chronic pain.

Abstract

“The endocannabinoid system consists of cannabinoid CB(1) and CB(2) receptors, endogenous ligands and their synthesising/metabolising enzymes. Cannabinoid receptors are present at key sites involved in the relay and modulation of nociceptive information. The analgesic effects of cannabinoids have been well documented. The usefulness of nonselective cannabinoid agonists can, however, be limited by psychoactive side effects associated with activation of CB(1) receptors. Following the recent evidence for CB(2) receptors existing in the nervous system and reports of their up-regulation in chronic pain states and neurodegenerative diseases, much research is now aimed at shedding light on the role of the CB(2) receptor in human disease. Recent studies have demonstrated anti-nociceptive effects of selective CB(2) receptor agonists in animal models of pain in the absence of CNS side effects. This review focuses on the analgesic potential of CB(2) receptor agonists for inflammatory, post-operative and neuropathic pain states and discusses their possible sites and mechanisms of action”

http://www.ncbi.nlm.nih.gov/pubmed/17952647

Targeting CB2 receptors and the endocannabinoid system for the treatment of pain.

Abstract

“The endocannabinoid system consists of the cannabinoid (CB) receptors, CB(1) and CB(2), the endogenous ligands anandamide (AEA, arachidonoylethanolamide) and 2-arachidonoylglycerol (2-AG), and their synthetic and metabolic machinery. The use of cannabis has been described in classical and recent literature for the treatment of pain, but the potential for psychotropic effects as a result of the activation of central CB(1) receptors places a limitation upon its use. There are, however, a number of modern approaches being undertaken to circumvent this problem, and this review represents a concise summary of these approaches, with a particular emphasis upon CB(2) receptor agonists. Selective CB(2) agonists and peripherally restricted CB(1) or CB(1)/CB(2) dual agonists are being developed for the treatment of inflammatory and neuropathic pain, as they demonstrate efficacy in a range of pain models. CB(2) receptors were originally described as being restricted to cells of immune origin, but there is evidence for their expression in human primary sensory neurons, and increased levels of CB(2) receptors reported in human peripheral nerves have been seen after injury, particularly in painful neuromas. CB(2) receptor agonists produce antinociceptive effects in models of inflammatory and nociceptive pain, and in some cases these effects involve activation of the opioid system. In addition, CB receptor agonists enhance the effect of mu-opioid receptor agonists in a variety of models of analgesia, and combinations of cannabinoids and opioids may produce synergistic effects. Antinociceptive effects of compounds blocking the metabolism of anandamide have been reported, particularly in models of inflammatory pain. There is also evidence that such compounds increase the analgesic effect of non-steroidal anti-inflammatory drugs (NSAIDs), raising the possibility that a combination of suitable agents could, by reducing the NSAID dose needed, provide an efficacious treatment strategy, while minimizing the potential for NSAID-induced gastrointestinal and cardiovascular disturbances. Other potential “partners” for endocannabinoid modulatory agents include alpha(2)-adrenoceptor modulators, peroxisome proliferator-activated receptor alpha agonists and TRPV1 antagonists. An extension of the polypharmacological approach is to combine the desired pharmacological properties of the treatment within a single molecule. Hopefully, these approaches will yield novel analgesics that do not produce the psychotropic effects that limit the medicinal use of cannabis.”

http://www.ncbi.nlm.nih.gov/pubmed/19150370

CB2 cannabinoid receptor agonists: pain relief without psychoactive effects?

Abstract

“Cannabinoid receptor agonists significantly diminish pain responses in animal models; however, they exhibit only modest analgesic effects in humans. The relative lack of efficacy in man may be because of the dose limitations imposed by psychoactive side effects. Cannabinoid agonists that selectively target CB(2) (peripheral) cannabinoid receptors should be free of psychoactive effects, perhaps allowing for more effective dosing. CB(2) receptor activation inhibits acute, inflammatory and neuropathic pain responses in animal models. In preclinical studies, CB(2) receptor agonists do not produce central nervous system effects. Therefore, they show promise for the treatment of acute and chronic pain without psychoactive effects.”

http://www.ncbi.nlm.nih.gov/pubmed/12550743