The endogenous cannabinoid, anandamide, induces COX-2-dependent cell death in apoptosis-resistant colon cancer cells.

Abstract

“Despite recent advances in understanding colorectal tumour biology, there is still a need to improve the 5-year survival rate of patients with colorectal cancer as approximately 40% of patients presenting with advanced disease will remain resistant to therapy. One of the major contributing factors in resistance to therapy is the failure of colorectal tumour cells to undergo apoptosis. Hence there is an urgent need to develop novel therapeutic approaches that can target apoptosis-resistant cells. To this end, we investigated the potential efficacy of the endogenous cannabinoid anandamide to induce cell death in apoptosis-resistant colon cancer cells. Here, for the first time, we show that anandamide can induce cell death in the apoptosis-resistant HCT116 Bax-/- colorectal cell line. Importantly, we provide direct genetic evidence that this induction of cell death is dependent on COX-2 expression. Interestingly, increased COX-2 expression also sensitised the SW480 colorectal cancer cell line (low endogenous COX-2) to anandamide-induced death, whereas COX-2 suppression by RNAi inhibited anandamide-induced cell death in the HCA7 colorectal cancer cell line (high endogenous COX-2 expression). This COX-2-dependent death was independent of cannabinoid receptor engagement (CB1 or CB2), and not a direct consequence of reactive oxygen species (ROS) formation. This study demonstrates a novel utilisation for COX-2 expression, targeting apoptotic defective colorectal cancer cells for destruction by anandamide. As COX-2 is not expressed in the normal colorectal epithelium, but highly expressed in colorectal tumours and apoptosis resistance contributes to treatment failure, these data suggest that anandamide has the potential to be an effective therapeutic in colorectal cancer.”

http://www.ncbi.nlm.nih.gov/pubmed/20514410

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Effects of anandamide on polyamine levels and cell growth in human colon cancer cells.

Abstract

“BACKGROUND:

Anandamide (AEA) is an endogenous agonist for cannabinoid receptor CB1-R and seems to be involved in the control of cancer growth. Polyamines are compounds that play an important role in cell proliferation and differentiation. Our aim was to investigate the effect of AEA on the polyamine levels (putrescine, spermidine and spermine) and cell growth of three human colon cancer cell lines, positive for CB1-R.

MATERIALS AND METHODS:

After AEA treatment of DLD-1, HT-29 and SW620 cells, polyamine analysis was performed by high-performance liquid chromatography (HPLC) and cell growth was measured by 3-(4,5 di-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test. CB1 gene expression was determined using reverse transcription and polymerase chain reaction (RT-PCR).

RESULTS:

AEA significantly reduced polyamine levels and cell proliferation dose-dependently when the tested cell lines were exposed for 24 h and 48 h. This inhibitory effect was mediated by CB1-R, since SR 1411716A, a selective CB-1 receptor antagonist, was able to entirely antagonize the effect of AEA. CB1-R mRNA levels were enhanced after AEA treatment in DLD-1 cells, whereas no induction was found in HT-29 and SW620 cells.

CONCLUSION:

It appears that mechanisms by which AEA may affect growth of colon cancer cells involve a decrease in cell proliferation rate by reducing the polyamine levels.”

http://www.ncbi.nlm.nih.gov/pubmed/20682986

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Induction of apoptosis by cannabinoids in prostate and colon cancer cells is phosphatase dependent.

Abstract

“AIM:

We hypothesized that the anticancer activity of cannabinoids was linked to induction of phosphatases.

MATERIALS AND METHODS:

The effects of cannabidiol (CBD) and the synthetic cannabinoid WIN-55,212 (WIN) on LNCaP (prostate) and SW480 (colon) cancer cell proliferation were determined by cell counting; apoptosis was determined by cleavage of poly(ADP)ribose polymerase (PARP) and caspase-3 (Western blots); and phosphatase mRNAs were determined by real-time PCR. The role of phosphatases and cannabinoid receptors in mediating CBD- and WIN-induced apoptosis was determined by inhibition and receptor knockdown.

RESULTS:

CBD and WIN inhibited LNCaP and SW480 cell growth and induced mRNA expression of several phosphatases, and the phosphatase inhibitor sodium orthovanadate significantly inhibited cannabinoid-induced PARP cleavage in both cell lines, whereas only CBD-induced apoptosis was CB1 and CB2 receptor-dependent.

CONCLUSION:

Cannabinoid receptor agonists induce phosphatases and phosphatase-dependent apoptosis in cancer cell lines; however, the role of the CB receptor in mediating this response is ligand-dependent.”

http://www.ncbi.nlm.nih.gov/pubmed/22110202

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid Receptor Activation Induces Apoptosis through Tumor Necrosis Factor α–Mediated Ceramide De novo Synthesis in Colon Cancer Cells

Abstract

“PURPOSE:

Cannabinoids have been recently proposed as a new family of potential antitumor agents. The present study was undertaken to investigate the expression of the two cannabinoid receptors, CB1 and CB2, in colorectal cancer and to provide new insight into the molecular pathways underlying the apoptotic activity induced by their activation.

EXPERIMENTAL DESIGN:

Cannabinoid receptor expression was investigated in both human cancer specimens and in the DLD-1 and HT29 colon cancer cell lines. The effects of the CB1 agonist arachinodyl-2′-chloroethylamide and the CB2 agonist N-cyclopentyl-7-methyl-1-(2-morpholin-4-ylethyl)-1,8-naphthyridin-4(1H)-on-3-carboxamide (CB13) on tumor cell apoptosis and ceramide and tumor necrosis factor (TNF)-alpha production were evaluated. The knockdown of TNF-alpha mRNA was obtained with the use of selective small interfering RNA.

RESULTS:

We show that the CB1 receptor was mainly expressed in human normal colonic epithelium whereas tumor tissue was strongly positive for the CB2 receptor. The activation of the CB1 and, more efficiently, of the CB2 receptors induced apoptosis and increased ceramide levels in the DLD-1 and HT29 cells. Apoptosis was prevented by the pharmacologic inhibition of ceramide de novo synthesis. The CB2 agonist CB13 also reduced the growth of DLD-1 cells in a mouse model of colon cancer. The knockdown of TNF-alpha mRNA abrogated the ceramide increase and, therefore, the apoptotic effect induced by cannabinoid receptor activation.

CONCLUSIONS:

The present study shows that either CB1 or CB2 receptor activation induces apoptosis through ceramide de novo synthesis in colon cancer cells. Our data unveiled, for the first time, that TNF-alpha acts as a link between cannabinoid receptor activation and ceramide production.”

http://clincancerres.aacrjournals.org/content/14/23/7691.long

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid receptor-independent cytotoxic effects of cannabinoids in human colorectal carcinoma cells: synergism with 5-fluorouracil.

Abstract

“Cannabinoids (CBs) have been found to exert antiproliferative effects upon a variety of cancer cells, including colorectal carcinoma cells. However, little is known about the signalling mechanisms behind the antitumoural effect in these cells, whether the effects are shared by endogenous lipids related to endocannabinoids, or whether such effects are synergistic with treatment paradigms currently used in the clinic. The aim of this preclinical study was to investigate the effect of synthetic and endogenous CBs and their related fatty acids on the viability of human colorectal carcinoma Caco-2 cells, and to determine whether CB effects are synergistic with those seen with the pyrimidine antagonist 5-fluorouracil (5-FU). The synthetic CB HU 210, the endogenous CB anandamide, the endogenous structural analogue of anandamide, N-arachidonoyl glycine (NAGly), as well as the related polyunsaturated fatty acids arachidonic acid and eicosapentaenoic acid showed antiproliferative and cytotoxic effects in the Caco-2 cells, as measured by using [(3)H]-thymidine incorporation assay, the CyQUANT proliferation assay and calcein-AM fluorescence. HU 210 was the most potent compound examined, followed by anandamide, whereas NAGly showed equal potency and efficacy as the polyunsaturated fatty acids. Furthermore, HU 210 and 5-FU produced synergistic effects in the Caco-2 cells, but not in the human colorectal carcinoma cell lines HCT116 or HT29. The compounds examined produced cytotoxic, rather than antiproliferative effects, by a mechanism not involving CB receptors, since the CB receptor antagonists AM251 and AM630 did not attenuate the effects, nor did pertussis toxin. However, alpha-tocopherol and the nitric oxide synthase inhibitor L-NAME attenuated the CB toxicity, suggesting involvement of oxidative stress. It is concluded that the CB system may provide new targets for the development of drugs to treat colorectal cancer.”

http://www.ncbi.nlm.nih.gov/pubmed/18629502

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Interaction of endocannabinoid system and steroid hormones in the control of colon cancer cell growth.

Abstract

“Increasing evidence suggest the role of the cannabinoid receptors (CBs) in the control of cell survival or death and signaling pathways involved in tumor progression. Cancer cell lines are characterized by a subtle modulation of CB levels which produces a modified responsiveness to specific ligands, but the molecular mechanisms underlying these events are poorly and partially understood. We previously provided evidence that the endocannabinoid (EC) anandamide (AEA) exerts anti-proliferative effect likely by modulation of the expression of genes involved in the cellular fate. In this study we focused on the role of the CB1 receptor, ECs, and steroids in the mechanisms involved in colorectal cancer (CRC) cell growth inhibition in vitro. We demonstrated that, in DLD1 and SW620 cells, 17β-estradiol induced a specific and strong up-regulation of the CB1 receptor by triggering activation of the CB1 promoting region, localized at the exon 1 of the CNR1 gene. Moreover, treatment of DLD1 and SW620 cells with Met-F-AEA, a stable AEA-analogous, or URB597, a selective inhibitor of FAAH, induced up-regulation of CB1 expression by co-localization of PPARγ and RXRα at the promoting region. Finally, increased availability of AEA, of both exogenous and endogenous sources, induced the expression of estrogen receptor-beta in both cell lines. Our results partially elucidated the role of EC system in the molecular mechanisms enrolled by steroids in the inhibition of colon cancer cell growth and strongly suggested that targeting the EC system could represent a promising tool to improve the efficacy of CRC treatments.”

http://www.ncbi.nlm.nih.gov/pubmed/21412772

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Possible endocannabinoid control of colorectal cancer growth.

Abstract

“BACKGROUND & AIMS:

The endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG) inhibit cancer cell proliferation by acting at cannabinoid receptors (CBRs). We studied (1). the levels of endocannabinoids, cannabinoid CB(1) and CB(2) receptors, and fatty acid amide hydrolase (FAAH, which catalyzes endocannabinoid hydrolysis) in colorectal carcinomas (CRC), adenomatous polyps, and neighboring healthy mucosa; and (2). the effects of endocannabinoids, and of inhibitors of their inactivation, on human CRC cell proliferation.

METHODS:

Tissues were obtained from 21 patients by biopsy during colonoscopy. Endocannabinoids were measured by liquid chromatography-mass spectrometry (LC-MS). CB(1), CB(2), and FAAH expression were analyzed by RT-PCR and Western immunoblotting. CRC cell lines (CaCo-2 and DLD-1) were used to test antiproliferative effects.

RESULTS:

All tissues and cells analyzed contain anandamide, 2-AG, CBRs, and FAAH. The levels of the endocannabinoids are 3- and 2-fold higher in adenomas and CRCs than normal mucosa. Anandamide, 2-AG, and the CBR agonist HU-210 potently inhibit CaCo-2 cell proliferation. This effect is blocked by the CB(1) antagonist SR141716A, but not by the CB(2) antagonist SR144528, and is mimicked by CB(1)-selective, but not CB(2)-selective, agonists. In DLD-1 cells, both CB(1) and CB(2) receptors mediate inhibition of proliferation. Inhibitors of endocannabinoid inactivation enhance CaCo-2 cell endocannabinoid levels and block cell proliferation, this effect being antagonized by SR141716A. CaCo-2 cell differentiation into noninvasive cells results in increased FAAH expression, lower endocannabinoid levels, and no responsiveness to cannabinoids.

CONCLUSIONS:

Endocannabinoid levels are enhanced in transformed colon mucosa cells possibly to counteract proliferation via CBRs. Inhibitors of endocannabinoid inactivation may prove useful anticancer agents.”

http://www.ncbi.nlm.nih.gov/pubmed/12949714

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Increased endocannabinoid levels reduce the development of precancerous lesions in the mouse colon

Abstract

“Colorectal cancer is an increasingly important cause of death in Western countries. Endocannabinoids inhibit colorectal carcinoma cell proliferation in vitro. In this paper, we investigated the involvement of endocannabinoids on the formation of aberrant crypt foci (ACF, earliest preneoplastic lesions) in the colon mouse in vivo. ACF were induced by azoxymethane (AOM); fatty acid amide hydrolase (FAAH) and cannabinoid receptor messenger ribonucleic acid (mRNA) levels were analyzed by the quantitative reverse transcription polymerase chain reaction (RT-PCR); endocannabinoid levels were measured by liquid chromatography-mass spectrometry; caspase-3 and caspase-9 expressions were measured by Western blot analysis. Colonic ACF formation after AOM administration was associated with increased levels of 2-arachidonoylglycerol (with no changes in FAAH and cannabinoid receptor mRNA levels) and reduction in cleaved caspase-3 and caspase-9 expression. The FAAH inhibitor N-arachidonoylserotonin increased colon endocannabinoid levels, reduced ACF formation, and partially normalized cleaved caspase-3 (but not caspase-9) expression. Notably, N-arachidonoylserotonin completely prevented the formation of ACF with four or more crypts, which have been show to be best correlated with final tumor incidence. The effect of N-arachidonoylserotonin on ACF formation was mimicked by the cannabinoid receptor agonist HU-210. No differences in ACF formation were observed between CB(1) receptor-deficient and wild-type mice. It is concluded that pharmacological enhancement of endocannabinoid levels (through inhibition of endocannabinoid hydrolysis) reduces the development of precancerous lesions in the mouse colon. The protective effect appears to involve caspase-3 (but not caspase-9) activation.

Cannabinoids have been licensed for clinical use as palliative treatment of chemotherapy, but increasing evidence shows antitumor actions of cannabinoid agonists on several tumor cells in vitro and in animal models [4, 5]. The main psychotropic cannabinoid is Δ9-tetrahydrocannabinol, which exerts its biological effects mainly by activating two G protein-coupled cannabinoid receptors, named CB1 and CB2 receptors [5]. Endogenous ligands for the cannabinoid receptors have been identified; the best known are arachidonylethanolamide (anandamide) and 2-arachidonoylglycerol (2-AG) [46]. When released, anandamide and 2-AG are removed from extracellular compartments by a carrier-mediated reuptake process, and once within the cell, both endocannabinoids are hydrolyzed by intracellular hydrolytic enzymes of which the enzyme fatty acid amide hydrolase (FAAH) is capable of recognizing both compounds as substrates [5, 6].

The proposed mechanisms of the antitumoral effect of cannabinoids are complex and may involve induction of apoptosis in tumor cells, antiproliferative actions, and an antimetastatic effects through inhibition of angiogenesis and tumor cell migration [6]. Concerning the gastrointestinal tract, it has been shown that cannabinoid receptor agonists, mostly via CB1 activation, potently inhibit the cell proliferation of colorectal carcinoma cell lines [7]. Furthermore, compounds capable of inhibiting endocannabinoid degradation and hence of prolonging the lifespan of endocannabinoids only when and where these compounds are produced to exert physiological or pathophysiological functions also inhibit colorectal carcinoma growth in vitro [7].

In summary, the present study provides strong evidence that enhancement of colon endocannabinoid levels through pharmacological inhibition of their enzymatic hydrolysis may be protective against preneoplastic lesions in the mouse colon; a condition that, like humans adenomatous polyps and colorectal carcinoma [7], is accompanied by an elevated endocannabinoid tone. This protective effect could be due to indirect activation of one or more of the several targets proposed to date for the endocannabinoids and appears to involve caspase-3 activation and subsequent apoptosis of colon preneoplastic cells. Further studies will be required to investigate if cannabinoid CB2 receptors are involved in the protective effects of AA-5-HT and HU210 and if these effects have any therapeutic relevance for the treatment of human colon carcinoma.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755791/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Chemopreventive effect of the non-psychotropic phytocannabinoid cannabidiol on experimental colon cancer.

Abstract

“Colon cancer affects millions of individuals in Western countries. Cannabidiol, a safe and non-psychotropic ingredient of Cannabis sativa, exerts pharmacological actions (antioxidant and intestinal antinflammatory) and mechanisms (inhibition of endocannabinoid enzymatic degradation) potentially beneficial for colon carcinogenesis. Thus, we investigated its possible chemopreventive effect in the model of colon cancer induced by azoxymethane (AOM) in mice. AOM treatment was associated with aberrant crypt foci (ACF, preneoplastic lesions), polyps, and tumour formation, up-regulation of phospho-Akt, iNOS and COX-2 and down-regulation of caspase-3. Cannabidiol-reduced ACF, polyps and tumours and counteracted AOM-induced phospho-Akt and caspase-3 changes. In colorectal carcinoma cell lines, cannabidiol protected DNA from oxidative damage, increased endocannabinoid levels and reduced cell proliferation in a CB(1)-, TRPV1- and PPARγ-antagonists sensitive manner. It is concluded that cannabidiol exerts chemopreventive effect in vivo and reduces cell proliferation through multiple mechanisms.”

http://www.ncbi.nlm.nih.gov/pubmed/22231745

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

No medical benefit from marijuana? How about a cancer cure?

“It’s been known for a long time that THC and other cannabinoids can effectively treat symptoms of cancer sufferers and chemotherapy patients, such as nausea, pain, loss of appetite and fatigue. But what scientists have proven in laboratory experiments and testing on animals the last few years is that cannabinoids also can kill cancer cells and stop the spread of aggressive types of the disease — cancer of the breast, brain, prostate, colon or lungs.

The way cannabinoids work, simply put, is by blocking or deactivating a gene called ID-1 that spreads cancer. One compound that’s been found to be especially effective doing this is called cannabidiol, or CBD.

Also, CBD (which unlike THC is non-psychoactive) and other cannabinoids are non-toxic, which greatly reduces the risk of harmful effects from their use.”

http://kpbj.com/opinions/editors_view/2012-10-02/no_medical_benefit_from_marijuana_how_about_a_cancer_cure

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous