Endocannabinoids in Liver Disease.

“Marijuana has been used for its psychoactive and medicinal properties for millennia. As other plant-derived substances, marijuana has been slow to yield its secrets, with insights into its mechanism of action beginning to emerge only during the last decades. The existence of specific CB receptors in mammalian tissues was first revealed by radioligand binding, followed by the molecular cloning of two G protein-coupled cannabinoid receptors (1). CB1 receptors are the most abundant receptors in the mammalian brain, but are also expressed in peripheral tissues, including various cell types of the liver, at much lower yet functionally relevant concentrations. CB2 receptors are expressed primarily in immune and hematopoietic cells, and have also been detected in the liver in certain pathological states. Additional CB receptors may exist…”

“Endocannabinoids are lipid mediators of the same cannabinoid (CB) receptors that mediate the effects of marijuana. The endocannabinoid system (ECS) consists of CB receptors, endocannabinoids, and the enzymes involved in their biosynthesis and degradation, and is present both in brain and peripheral tissues, including the liver. The hepatic ECS is activated in various liver diseases, which contributes to the underlying pathologies. In cirrhosis of various etiologies, activation of vascular and cardiac CB1 receptors by macrophage- and platelet-derived endocannabinoids contribute to the vasodilated state and cardiomyopathy, which can be reversed by CB1 blockade. In mouse models of liver fibrosis, activation of CB1 receptors on hepatic stellate cells is fibrogenic, and CB1 blockade slows the progression of fibrosis. Fatty liver induced by high-fat diets or chronic alcohol feeding depend on activation of peripheral, including hepatic CB1 receptors, which also contribute to insulin resistance and dyslipidemias. Although the documented therapeutic potential of CB1 blockade is limited by neuropsychiatric side effects, these may be mitigated by using novel, peripherally restricted CB1 antagonists.”

“Concluding Remarks

The ECS is present in the liver and is involved in the control of various hepatic functions with important therapeutic implications. Increased CB1 activity contributes to the hemodynamic abnormalities and promotes fibrosis in liver cirrhosis, whereas CB1 blockade attenuates and delays these changes. Endocannabinoids acting via hepatic CB1 receptors have emerged as mediators of both diet-induced and alcoholic fatty liver which, together, account for the majority of cirrhosis in Western societies. Additionally, hepatic CB1 activation contributes to obesity-related insulin- and leptin-resistance and dyslipidemias. This provides strong rationale for the therapeutic use of CB1 antagonists in these conditions. Although neuropsychiatric side effects limit the therapeutic potential of brain-penetrant CB1 antagonists, the recent emergence of second generation, peripherally-restricted CB1 antagonists may mitigate this problem. Additionally, non-psychoactive CB2 agonists may offer therapeutic benefit in attenuating liver injury and promoting tissue repair in the fibrotic liver.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073545/

[The endocannabinoid system as a novel target for the treatment of liver fibrosis].

Abstract

 “The cannabinoid system comprises specific G protein-coupled receptors (CB1 and CB2), exogenous (marijuana-derived cannabinoids) and endogenous (endocannabinoids) ligands, and a machinery dedicated to endocannabinoid synthesis and degradation. Studies over two decades have extensively documented the crucial role of the cannabinoid system in the regulation of a variety of pathophysiological conditions. However, its role in liver pathology has only been recently unravelled, probably given the low expression of CB1 and CB2 in the normal liver. We have recently demonstrated that CB1 and CB2 receptors display opposite effects in the regulation of liver fibrogenesis during chronic liver injury. Indeed, both receptors are up-regulated in the liver of cirrhotic patients, and expressed in liver fibrogenic cells. Moreover, CB1 receptors are profibrogenic and accordingly, the CB1 antagonist rimonabant reduces fibrosis progression in three experimental models. In keeping with these results, daily cannabis smoking is a risk factor for fibrosis progression in patients with chronic hepatitis C. In contrast, CB2 display antifibrogenic effects, by a mechanism involving reduction of liver fibrogenic cell accumulation. These results may offer new perspectives for the treatment of liver fibrosis, combining CB2 agonist and CB1 antagonist therapy.”

http://www.ncbi.nlm.nih.gov/pubmed/17412522

Attenuation of Experimental Autoimmune Hepatitis by Exogenous and Endogenous Cannabinoids: Involvement of Regulatory T Cells

“The endocannabinoid system plays a protective role in various inflammatory diseases, and it is considered an attractive therapeutic target.”

“The aim of the present study was to determine the immunomodulatory effect of THC in the murine model of ConA-induced hepatitis. We demonstrate that a single injection of THC significantly ameliorates ConA-induced T-cell-mediated liver injury by up-regulating Forkhead helix transcription factor p3 (Foxp3)+ regulatory T cells and down-regulating inflammatory cytokines. Using select cannabinoid receptor agonists and antagonists, we demonstrate that THC mediates immune modulation in this model by signaling through both CB1 and CB2 receptors. We also demonstrate that anandamide, an endocannabinoid can effectively attenuate the disease.”

“There is growing interest in recent years to target cannabinoid receptors for treating liver diseases. In the current study, CB1 or CB2 activation alone had no anti-inflammatory effect on hepatitis. However, cannabinoids that bind to both CB1 and CB2 receptors (THC, CP55,940, WIN55212, and anandamide) effectively attenuated hepatitis. That CB1/CB2 mixed agonists could suppress the disease but not the coadministered CB1 and CB2 agonists indicates that both the cannabinoid receptors need to be activated simultaneously to produce the observed effect and that the different pharmacokinetics of the two coadministered agonists may not allow this to happen. Signaling through both the receptors is important because blocking either CB1 or CB2 could reverse the effect of THC.”

“Taken together, our data suggest that exogenous cannabinoids such as THC upon binding to CB1 and CB2 receptors on immune cells, induce apoptosis in effector T cells, up-regulate Treg function, and suppress inflammatory cytokines there by preventing ConA-induced activated T-cell-mediated liver injury. The observation that the anandamide treatment ameliorates ConA-induced hepatitis, together with FAAH deficiency or inhibition leading to increased resistance to the disease, strongly suggests that the endocannabinoid system serves to attenuate the inflammatory response in ConA-induced acute hepatitis. These findings raise the promising potential of developing novel pharmacological treatments for T-cell-mediated liver diseases.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2828293/

Endocannabinoids in liver disease and hepatic encephalopathy.

Abstract

“Chronic liver disease results from a variety of causes such as hepatitis virus infections, autoimmune processes and alcohol consumption. Its complications include fat deposition, hemodynamic changes and fibrosis. Clinically there may be progression to portal-hypertension and porto-systemic encephalopathy. Pioneering research from the laboratory of Kunos at NIH has stressed the importance of endocannabinoids (ECs) as mediators of some of the pathological processes in chronic liver disease. The present review summarizes the literature on the association between ECs and liver disease, as well as the therapeutic potential of ECs and exogenous cannabinoids in liver disease with emphasis on hepatic encephalopathy.”

http://www.ncbi.nlm.nih.gov/pubmed/18781986

Use of cannabinoids as a novel therapeutic modality against autoimmune hepatitis.

Abstract

“Autoimmune hepatitis is a severe immune mediated chronic liver disease with a prevalence range between 50 and 200 cases per million in Western Europe and North America and mortality rates of up to 80% in untreated patients. The induction of CB1 and CB2 cannabinoid receptors during liver injury and the potential involvement of endocannabinoids in the regulation of this process have sparked significant interest in further evaluating the role of cannabinoid systems during hepatic disease. Cannabinoids have been shown to possess significant immunosuppressive and anti-inflammatory properties. Cannabinoid abuse has been shown to exacerbate liver fibrogenesis in patients with chronic hepatitis C infection involving CB1 receptor. Nonetheless, CB2 receptor activation may play a protective role during chronic liver diseases. Thus, differential targeting of cannabinoid receptors may provide novel therapeutic modality against autoimmune hepatitis. In this review, we summarize current knowledge on the role of endocannabinoids and exocannabinoids in the regulation of autoimmune hepatitis.”

http://www.ncbi.nlm.nih.gov/pubmed/19647124