Cannabinoid Receptor Found to Help Suppress Habitual Behavior

“A mouse study finds that CB1 protein in orbitofrontal cortex neurons mediates the ability to switch between habitual and active-learning behaviors when needed.

Everyone carries out daily habits and routines. As David Lovinger, Ph.D., chief of the Laboratory for Integrative Neuroscience at the National Institute on Alcohol Abuse and Alcoholism (NIAAA), explained, “If your brain does not habitualize familiar tasks or places, it would be very difficult to focus because you’re constantly processing all these sensory inputs.”

Nonetheless, it’s important that the brain can shift from habit mode to a more active, goal-directed mindset. While an occasional lapse is normal, a chronic inability to exit from habitual behavior is a critical element of both addiction and obsessive-compulsive disorders. A new study carried out by Lovinger and colleagues adds to the understanding of the brain circuits responsible for the habitual/goal-directed shift.

The results, published June 15 in Neuron, also point to a receptor called cannabinoid type 1 (CB1) as a key regulator of this circuitry.

The findings were made possible using a training strategy that enabled mice to push levers for food in both a habitual and goal-directed manner. The mice were placed in enclosures with differing visual decorations; the lever in the first dropped a food reward after it was pressed a certain number of times, while the lever in the second would drop a reward at a random time after the lever had been pressed once.

“In the first scenario, the mouse makes the connection quickly that pressing the lever 20 times, for example, gets it a reward,” Lovinger told Psychiatric News. “In the second enclosure, that contiguity is disrupted. The mouse knows that pressing will eventually lead to reward, but it doesn’t know how many, so it will just start pressing at a periodic rate.”

On alternate testing days, the mice were allowed to eat their treats prior to the testing, and on these days—termed the devalued state because the desire for the reward is lessened—mice pressed the lever far less in the goal-directed enclosure, but still roughly the same amount in the random-time enclosure—much like a habit.

The researchers then tried these tests out on mice in which the neurons that travel between the orbitofrontal cortex (OFC) and dorsal striatum (DS, which links decision making and reward behaviors) were blocked and observed that the mice kept pressing a lot in both enclosures, suggesting an inability to switch out of habit mode.

“Normally, on devalued days the urge to default to the habit of pressing the lever repeatedly gets suppressed in some way because the brain is providing information that the food isn’t as valuable,” Lovinger said.

With the OFC-DS connection identified, the next question was what part of these neurons was responsible for suppressing habits? Some previous work by Lovinger’s colleague and study coauthor Rui Costa, Ph.D., an investigator at the Champalimaud Institute for the Unknown in Lisbon, Portugal, pointed to CB1 as a potential candidate; the CB1 receptor interacts with endocannabinoids, natural messenger molecules in the body that are strikingly similar to THC, the active compound in marijuana.

When mice lacking the CB1 receptor in their OFC neurons were trained, they reduced their lever pressing in both enclosures on devalued days, reflective of a state in which the mice always used goal-directed behaviors because they could not form habits.

Having found CB1 as the receptor that Helps suppress habits, Lovinger said the next step would be to find the agent in the OFC-DS neural circuit that strengthens habits—and that should provide major clues about how drugs of abuse like alcohol and marijuana disrupt the normal process of habituation.

While the NIAAA is more focused on the addiction side, Lovinger thinks the current knowledge gained on weakened habits could be valuable in neuropsychiatry as well.

“It may be a bit of a stretch, but ADHD could be mediated in part by reduced habit-forming potential,” he said. “If someone is trying to pay attention to all potential outcomes in every decision, it could explain the lack of focus displayed by people with ADHD.””

http://psychnews.psychiatryonline.org/doi/full/10.1176/appi.pn.2016.7b25

Cannabis Targets Receptors in the Amygdala Linked to Anxiety

“Marijuana may hijack cannabinoid receptors in the amygdala to reduce anxiety.”

“An international group of researchers led by Vanderbilt University has discovered for the first time that there are cannabinoid receptors in the amygdala. The amygdala is one of the primary brain regions involved in regulating anxiety and the flight-or-fight response.

“The discovery may help explain why marijuana users say they take the drug mainly to reduce anxiety” said Sachin Patel, M.D., Ph.D., the paper’s senior author and professor of Psychiatry and of Molecular Physiology and Biophysics at Vanderbilt. He said, “this could be highly important for understanding how cannabis exerts its behavioral effects.”

The study titled, “Multiple Mechanistically Distinct Modes of Endocannabinoid Mobilization at Central Amygdala Glutamatergic Synapses” is published in the March 2014 issue of the journal Neuron.”

https://www.psychologytoday.com/blog/the-athletes-way/201403/cannabis-targets-receptors-in-the-amygdala-linked-anxiety

New Study Finds Marijuana To Be Effective Against Depression, Migraine and Anxiety

“Research has suggested that cannabis may be a promising treatment option for a number of different physical and mental health conditions, from post-traumatic stress disorder to chronic pain. A study released this week suggests that depression , anxiety and migraine can be added to that list.

Neuroscientists from the University of Buffalo’s Research Institute on Addictions found that endocannabinoids — chemical compounds in the brain that activate the same receptors as THC, an active compound in marijuana — may be helpful in treating depression, anxiety and migraine that results from chronic stress.

In studies on rats, the researchers found that chronic stress reduced the production of endocannabinoids, which affect our cognition, emotion and behavior, and have been linked to reduced feelings of pain and anxiety, increases in appetite and overall feelings of well-being. The body naturally produces these compounds, which are similar to the chemicals in cannabis. Reduction of endocannabinoid production may be one reason that chronic stress is a major risk factor in the development of depression.

Then, the research team administered marijuana cannabinoids to the rats, finding it to be an effective way to restore endocannabinoid levels in their brains — possibly, thereby, alleviating some symptoms of depression.

“Using compounds derived from cannabis — marijuana — to restore normal endocannabinoid function could potentially help stabilize moods and ease depression,” lead researcher Dr. Samir Haj-Dahmane said in a university press release.

Recent research around marijuana’s effect on symptoms of post-traumatic stress disorder further bolsters the Buffalo neuroscientists’ findings, since both disorders involve the way the brain responds to stress. A study published last year in the journal Neuropsychopharmacology, for instance, found synthetic cannabinoids triggered changes in brain centers associated with traumatic memories in rats, preventing some of the behavioral and physiological symptoms of PTSD. Another study published last year found that patients who smoked cannabis experienced a 75 percent reduction in PTSD symptoms.

However, it’s important to note that the relationship between marijuana and depression  is complex. Some research has suggested that regular and heavy marijuana smokers are at a higher risk for depression, although a causal link between cannabis use and depression has not been established. More studies are needed in order to determine whether, and how, marijuana might be used in a clinical context for patients with depression.”  http://painphysicianjournal.co/2016/06/30/new-study-finds-marijuana-to-be-effective-against-depression-migraine-and-anxiety/

New Study Finds Marijuana To Be Effective Against Depression, Migraine and Anxiety

New Study Finds Endocannabinoids May Help OCD

OCD and cannabis research

“Obsessive-Compulsive Disorder (OCD) may look different in each affected individual. One person might feel it is necessary to wash their hands constantly while others might feel obligated to count something over and over.

According to the National Institute of Mental Health, OCD is a common disorder in which a person has uncontrollable and reoccurring obsessions and compulsions. Obsessions often cause anxiety in a person, so they feel by doing compulsions, or certain behaviors, they might relieve their anxiety.

There are many treatments and medications used to combat OCD, however research is now showing that endocannabinoids can also play a huge role in OCD. The new study was funded by the The National Institute of Alcohol Abuse and Alcoholism (NIAA) and was conducted with mice. Researchers probed the brain mechanisms that are used when a mouse transitions from goal-directed behavior to habitual behaviors. They then led the mouse to receive food two ways. One way the mice received food was through doing a goal-directed behavior while the second way was through doing a habitual behavior. They then found that by deleting a certain endocannabinoid receptor, mice didn’t form habits.

This discovery led scientists to the conclusion that endocannabinoids, which are natural messengers in our bodies similar to cannabinoids found in cannabis, have a lot to do with how our brains make decisions.

George F. Koob, Ph.D. is the Director of the NIAA stated that their study revealed a mechanism in the brain that controls the transition between goal-directed behaviors and habitual behaviors. He went on to explain, “As we learn more about this mechanism, it could reveal how the brain forms habits and, more specifically, how both endocannabinoids and cannabinoid abuse can influence habitual behavior pathophysiology.”

This conclusion that our bodies natural endocannabinoids and the active ingredients in cannabis can affect memory and decision-making may give scientists a glimpse into new medications and treatments for OCD.” http://ireadculture.com/new-study-finds-endocannabinoids-may-help-ocd/

New Study Finds Endocannabinoids May Help OCD

Benefits of Cannabis Terpenes: Ocimene, Terpinolene, and Guaiol

Leafly

“Terpenes are a group of fragrant essential oils – secreted alongside cannabinoids like THC and CBD – that contribute to the complex aroma of cannabis. They are also generally responsible for many of the distinguishing characteristics of different strains, and this discovery has led to a sharp increase in interest among researchers, producers, and consumers alike.

Though cannabis contains up to 200 different terpenes, there are about 10 primary terpenes and 20 secondary terpenes that occur in significant concentrations. We’d like to introduce you to the potential health benefits of three of those terpenes: ocimene, terpinolene, and guaiol.

Ocimene is an isomeric hydrocarbon found in a wide variety of fruits and plants. It is recognized by its sweet, fragrant, herbaceous, and woodsy aromas, which feature prominently in several perfumes, and which help plants defend themselves in their natural environment. Ocimene occurs naturally in botanicals as diverse as mint, parsley, pepper, basil, mangoes, orchids, kumquats, and of course cannabis.

Ocimene’s potential medical benefits include:

  • Antiviral
  • Antifungal
  • Antiseptic
  • Decongestant
  • Antibacterial

Cannabis strains that can test high in ocimene include Golden Goat, Strawberry Cough,Chernobyl, and Space Queen. At Tilray, strains currently displaying high concentrations of ocimene include OG Kush, Elwyn, and Lemon Sour Diesel.

Terpinolene is another isomeric hydrocarbon, characterized by a fresh, piney, floral, herbal, and occasionally citrusy aroma and flavor. It is found in a variety of other pleasantly fragrant plants including nutmeg, tea tree, conifers, apples, cumin, and lilacs, and is sometimes used in soaps, perfumes, and lotions.

Terpinolene’s potential medical benefits include:

  • Anticancer
  • Antioxidant
  • Sedative
  • Antibacterial
  • Antifungal

Terpinolene is found most commonly in sativa-dominant strains; a few that frequently exhibit high concentrations of this terpene include Jack Herer and its derivatives, such as Pineapple Jack, J1, and Super Jack. At Tilray, strains currently possessing higher than average concentrations of terpinolene include Lemon Sour Diesel, Afghani, and Jean Guy.

Guaiol is not an oil but a sesquiterpenoid alcohol, and is also found in cypress pine and guaiacum. It has been used for centuries as a treatment for diverse ailments ranging from coughs to constipation to arthritis. It is also an effective insect repellent and insecticide.

Guaiol’s potential medical properties include:

  • Antimicrobial
  • Anti-inflammatory

Strains that can test high in guaiol include Chocolope, Liberty Haze, and Blue Kush. At Tilray, strains currently exhibiting relatively high concentrations of guaiol include Barbara Bud, Jean

https://www.leafly.com/news/cannabis-101/benefits-of-cannabis-terpenes-ocimene-terpinolene-and-guaiol

Researcher explores effects of cannabinoids on blood pressure

Andrei Derbenev, associate professor of physiology, Tulane School of Medicine

“Hypertension — or high blood pressure — is a long-term, high-risk condition for millions of people worldwide.

At the moment, synthetic beta-blockers are one of the most common drugs prescribed to treat hypertension.

But what if a natural drug, marijuana, which has been known for 5,000 years, could be used in the treatment of high blood pressure?

Andrei Derbenev, associate professor of physiology in the Tulane University School of Medicine, recently received a four-year, $1.5 million research grant from the National Institutes of Health to study how cannabinoids — the compounds of cannabis (another name for marijuana) — affect a brain stem area involved in blood pressure control.

His research may have important clinical applications for the treatment of hypertension.

He is identifying the cells in the sympathetic nervous system linked to the kidneys, a key organ in hypertension. (The sympathetic nervous system is the part of the autonomic nervous system that stimulates the body’s “fight or flight” response. Overactivity of the sympathetic nervous system is a cause of high blood pressure.)

He and his research team are studying the effect of exogenous cannabinoids — from the marijuana plant — and endogenous cannabinoids —those naturally produced within the body.

Cannabis “has lots of different chemicals inside. Some of them are painkillers. Some of them, we don’t know what they are doing.”

People ask Derbenev all the time: Is marijuana good? Is it bad? But the debate, he says, should be, instead, “Which works? Which does not work?”

About a decade ago, Derbenev led a study about the effect of cannabinoids on the parasympathetic nervous system, the part of the autonomic nervous system that stimulates the body to “rest and digest.” In that investigation, his team showed the mechanism by which cannabis can reduce digestive spasms and thus decrease vomiting. It’s a finding of great interest to cancer patients experiencing nausea while undergoing chemotherapy.”

https://news.tulane.edu/news/researcher-explores-effects-cannabinoids-blood-pressure

Marijuana fights Alzheimer’s disease, Salk Institute scientists discover

Cannabinoids remove plaque-forming Alzheimer's proteins from brain cells

“Salk Institute scientists have discovered that a main compound found in marijuana can fight a toxic protein associated with Alzheimer’s disease. According to the scientists, at this time, there are no drugs that significantly inhibit cell death associated with Alzheimer’s disease (AD), Parkinson’s or Huntington’s diseases. However, the most recent data about Alzheimer’s and marijuana suggests that there is a therapeutic potential of cannabinoids (the chemical compounds secreted by cannabis flowers) for the treatment of AD. Cannabinoids are able to remove plaque-forming Alzheimer’s proteins from brain cells, reports the Medical Express on June 29.”  http://www.examiner.com/article/marijuana-fights-alzheimer-s-disease-salk-institute-scientists-discover

“Cannabinoids remove plaque-forming Alzheimer’s proteins from brain cells”  http://medicalxpress.com/news/2016-06-cannabinoids-plaque-forming-alzheimer-proteins-brain.html

“Cannabinoids remove toxic proteins associated with Alzheimer’s disease from the brain” http://www.irishexaminer.com/examviral/science-world/cannabinoids-remove-toxic-proteins-associated-with-alzheimers-disease-from-the-brain-407788.html

“Marijuana Compound Helps Remove Alzheimer’s Disease Protein From Brain” -brain.” http://www.scienceworldreport.com/articles/42990/20160630/marijuana-compound-helps-remove-alzheimers-disease-protein-from-brain.htm

“Marijuana compound removes toxic Alzheimer’s protein from the brain”  http://www.sciencealert.com/marijuana-compound-removes-toxic-alzheimer-s-protein-from-the-brain

“Cannabinoids remove plaque-forming Alzheimer’s proteins from brain cells”  https://www.sciencedaily.com/releases/2016/06/160629095609.htm

“Cannabinoids Remove Plaque-forming Alzheimer’s Proteins from Brain Cells”  https://www.laboratoryequipment.com/news/2016/06/cannabinoids-remove-plaque-forming-alzheimers-proteins-brain-cells

“MARIJUANA COMPOUND REMOVES ALZHEIMER’S PLAQUE FROM BRAIN CELLS, STUDY FINDS” http://www.popsci.com/marijuana-compound-removes-alzheimers-plaque-from-brain-cells-study

“Cannabinoids remove plaque-forming Alzheimer’s proteins from brain cells. Preliminary lab studies at the Salk Institute find THC reduces beta amyloid proteins in human neurons.” http://www.salk.edu/news-release/cannabinoids-remove-plaque-forming-alzheimers-proteins-from-brain-cells/

 

No Link Between Marijuana Use and Stroke Risk

Medpage Today

“There was no evidence that marijuana use was associated with an increased risk of ischemic stroke in adolescents and young adults, a researcher said here.

“Our data did not support” a link between the drug and stroke risk”

http://www.medpagetoday.com/meetingcoverage/aan/45577

“Cannabinoids in experimental stroke: a systematic review and meta-analysis. Cannabinoids (CBs) show promise as neuroprotectants with some agents already licensed in humans for other conditions. Cannabinoids reduced infarct volume in transient and permanent ischemia and in all subclasses: endocannabinoids, CB1/CB2 ligands, CB2 ligands, cannabidiol, Δ9-tetrahydrocannabinol, and HU-211. Overall, CBs significantly reduced infarct volume and improve functional outcome in experimental stroke.” http://www.ncbi.nlm.nih.gov/pubmed/25492113

http://www.thctotalhealthcare.com/category/stroke-2/

Pot a Common Remedy to Ease Back Pain

“Use of marijuana to ease back pain was common among patients at a university spine clinic in Colorado where pot has been legal for medical purposes since 2000, but most of the users did not have a prescription, according to research presented here.

Among 184 patients at a Colorado spine center, 19% said they used marijuana for pain relief, but less than half, 46%, actually had a prescription for the drug, according to study co-author Michael Finn, MD, an assistant professor of neurosurgery at the University of Colorado in Denver.

The most common way to use the drug was smoking it, 90%, followed by oral ingestion, 45%, and vaporization, 29%.

According to the users, marijuana worked. A total of 89% said it greatly or moderately relived their pain, and 81% said it worked as well as or better than narcotic painkillers.”

http://www.medpagetoday.com/MeetingCoverage/AdditionalMeetings/42228

CANNABIS CHEMICALS STOP PROSTATE CANCER GROWTH

Image result for bjc british journal of cancer

“ACTIVE chemicals in cannabis have been shown to halt prostate cancer cell growth according to research published in the British Journal of Cancer*.

Researchers from the University of Alcala, in Madrid tested the effects of the active chemicals in cannabis called cannabinoids** on three human prostate cancer cell lines – called PC-3, DU-a45 and LNCaP.

The prostate cancer cells carry molecular ‘garages’- called receptors- in which cannabinoids can ‘park’.

The scientists showed for the first time that if cannabinoids ‘park’ on a receptor called CB2, the cancer cells stop multipyling.

“This research suggest that prostate cancer cells might stop growing if they are treated with chemicals found in cannabis but more work needs to be done to explore the potential of the cannabinoids in treatment.”

To confirm the findings the scientists switched off the CB2 receptors – or ‘closed the garage doors’- on the prostate cells. When cannabinoids were then added to cells without the CB2 receptor, the prostate cancer cells carried on dividing and growing. This suggests that cannabinoids connect with the CB2 receptors on prostate cancer cells to stop cell division and spread.

Professor Ines Diaz-Laviada, study author at the University of Alcala said: “Our research shows that there are areas on prostate cancer cells which can recognise and talk to chemicals found in cannabis called cannabinoids. These chemicals can stop the division and growth of prostate cancer cells and could become a target for new research into potential drugs to treat prostate cancer.””

http://www.nature.com/bjc/press_releases/p_r_aug09_6605248.html

https://www.news-medical.net/news/20090821/Cannabis-chemicals-stop-prostate-cancer-growth.aspx