Study examines potential use of medical marijuana, CBD in treating epilepsy

“…cannabis has been used to treat epilepsy for centuries… The therapeutic potential of medical marijuana and pure cannabidiol (CBD), an active substance in the cannabis plant, for neurologic conditions is highly debated. A series of articles published in Epilepsia, a journal of the International League Against Epilepsy (ILAE), examine the potential use of medical marijuana and CBD in treating severe forms of epilepsy…”

http://www.news-medical.net/news/20140523/Study-examines-potential-use-of-medical-marijuana-CBD-in-treating-epilepsy.aspx

http://www.thctotalhealthcare.com/category/epilepsy-2/

A restricted population of CB1 cannabinoid receptors with neuroprotective activity.

“The CB1 cannabinoid receptor, the main molecular target of endocannabinoids and cannabis active components, is the most abundant G protein-coupled receptor in the mammalian brain…

The data unequivocally identify the restricted population of CB1 receptors located on glutamatergic terminals as an indispensable player in the neuroprotective activity of (endo)cannabinoids, therefore suggesting that this precise receptor pool constitutes a promising target for neuroprotective therapeutic strategies.”

http://www.ncbi.nlm.nih.gov/pubmed/24843137

Cannabinoids in pain management: CB1, CB2 and non-classic receptor ligands.

“The available commercial cannabinoids have a narrow therapeutic index. Recently developed peripherally restricted cannabinoids, regionally administered cannabinoids, bifunctional cannabinoid ligands and cannabinoid enzyme inhibitors, endocannabinoids, which do not interact with classic cannabinoid receptors (CB1r and CB2r), cannabinoid receptor antagonists and selective CB1r agonists hold promise as analgesics…

Expert opinion: Regional and peripherally restricted cannabinoids will reduce cannabinomimetic side effects. Spinal cannabinoids may increase the therapeutic index by limiting the dose necessary for response and minimize drugs exposure to supraspinal sites where cannabinomimetic side effects originate. Cannabinoid bifunctional ligands should be further explored. The combination of a CB2r agonist with a transient receptor potential vanilloid (TRPV-1) antagonist may improve the therapeutic index of the CB2r agonist. Enzyme inhibitors plus TRPV-1 blockers should be further explored. The development of analgesic tolerance with enzyme inhibitors and the pronociceptive effects of prostamides limit the benefits to cannabinoid hydrolyzing enzyme inhibitors.

Most clinically productive development of cannabinoids over the next 5 years will be in the area of selective CB2r agonists. These agents will be tested in various inflammatory, osteoarthritis and neuropathic pains.”

http://www.ncbi.nlm.nih.gov/pubmed/24836296

http://www.thctotalhealthcare.com/category/pain-2/

Cannabinoid-induced autophagy regulates suppressor of cytokine signaling (SOCS)-3 in intestinal epithelium.

“Autophagy is a catabolic process involved in homeostatic and regulated cellular protein recycling and degradation via the lysosomal degradation pathway. Emerging data associates impaired autophagy, increased activity in the endocannabinoid system and upregulation of suppressor of cytokine signaling (SOCS)-3 protein expression during intestinal inflammatory states. We have investigated whether these three processes are linked. By assessing the impact of phyto-cannabinoid cannabidiol (CBD), synthetic cannabinoid (ACEA) and endocannabinoid (AEA) on autophagosome formation, we explored whether these actions were responsible for cyclic SOCS3 protein levels. Our findings show that all three cannabinoids induce autophagy in a dose-dependent manner in fully differentiated CaCo2 cells, a model of mature intestinal epithelium. ACEA and AEA induced canonical autophagy, which was cannabinoid receptor (CB)-1 mediated. In contrast, CBD was able to bypass both the CB1 receptor and the canonical pathway to induce autophagy, albeit to a lesser extent. Functionally, all three cannabinoids reduced SOCS3 protein expression, which was reversed by blocking both early and late autophagy. In conclusion, the regulatory protein, SOCS3, is itself regulated by autophagy and cannabinoids play a role in this process, which could be important when considering therapeutic applications for the cannabinoids in inflammatory conditions.”

http://www.ncbi.nlm.nih.gov/pubmed/24833710

New insights into the molecular pathophysiology of fragile X syndrome and therapeutic perspectives from the animal model.

“Fragile X syndrome is the most common monogenetic form of intellectual disability and is a leading cause of autism. This syndrome is produced by the reduced transcription of the fragile X mental retardation (FMR1) gene, and it is characterized by a range of symptoms heterogeneously expressed in patients such as cognitive impairment, seizure susceptibility, altered pain sensitivity and anxiety.

The recent advances in the understanding of the pathophysiological mechanisms involved have opened novel potential therapeutic approaches identified in preclinical rodent models as a necessary preliminary step for the subsequent evaluation in patients… New findings in the animal models open other possible therapeutic approaches such as the mammalian target of rapamycin signaling pathway or the endocannabinoid system… emerging data recently obtained in preclinical models of fragile X syndrome supporting these new therapeutic perspectives.”

http://www.ncbi.nlm.nih.gov/pubmed/24831882

http://www.thctotalhealthcare.com/category/fragile-x-syndrome-fxs/

CB2 cannabinoid receptors contribute to bacterial invasion and mortality in polymicrobial sepsis.

“Sepsis is a major healthcare problem and current estimates suggest that the incidence of sepsis is approximately 750,000 annually. Sepsis is caused by an inability of the immune system to eliminate invading pathogens.

Here we examined the role of CB(2) receptors in regulating the host’s response to sepsis…

Taken together, our results establish for the first time that CB(2) receptors are important contributors to septic immune dysfunction and mortality, indicating that CB(2) receptors may be therapeutically targeted for the benefit of patients suffering from sepsis.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712683/

Cannabinoid receptor 1 inhibition improves the intestinal microcirculation.

“The data supports the involvement of the CB1R signaling in leukocyte activation during sepsis. Drugs targeting the CB1R may have therapeutic potential in systemic inflammation, such as sepsis.”

http://www.ncbi.nlm.nih.gov/pubmed/23334604

“Cannabinoid receptor 1 inhibition causes seizures during anesthesia induction in experimental sepsis… The data suggest that CB1R inhibition in combination with pentobarbital may increase the incidence of anesthetic-induced seizures in the case of sepsis.”

http://www.ncbi.nlm.nih.gov/pubmed/22504215

 

Cannabinoid receptor 2 activation reduces intestinal leukocyte recruitment and systemic inflammatory mediator release in acute experimental sepsis.

“The aim of this study was to investigate the effects of CB2R manipulation on leukocyte activation within the intestinal microcirculation in two acute experimental sepsis models…

CB2R activation reduces leukocyte activation and systemic release of inflammatory mediators in acute experimental sepsis. Drugs targeting the CB2R pathway may have therapeutic potential in sepsis.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3681373/

The cannabinoid 2 receptor as a potential therapeutic target for sepsis.

“The sepsis syndrome represents an improper immune response to pathogens and is associated with an unacceptably high rate of mortality. Although supportive care is of benefit to the septic patient, there are no viable therapeutics available that target the immune system suitable for the whole septic population. Recently, using a physiologically relevant murine mouse model, the cannabiniod 2 receptor has been shown to play a critical role in the host response to sepsis. Here, the structure, expression, signaling, and function of the CB2 receptor on leukocytes will be reviewed. Further, the effects mediated by the CB2 receptor during sepsis will be reviewed. Altogether, alterations in inflammation and the host response during sepsis by the CB2 receptor support its use as a possible therapeutic agent.”

http://www.ncbi.nlm.nih.gov/pubmed/20509835

http://www.thctotalhealthcare.com/category/sepsis-2/