Mitochondrial CB1 receptor is involved in ACEA-induced protective effects on neurons and mitochondrial functions.

“Mitochondrial dysfunction contributes to cell death after cerebral ischemia/reperfusion (I/R) injury.

Cannabinoid CB1 receptor is expressed in neuronal mitochondrial membranes (mtCB1R) and involved in regulating mitochondrial functions under physiological conditions…

In purified neuronal mitochondria, mtCB1R activation attenuated Ca(2+)-induced mitochondrial injury.

In conclusion, mtCB1R is involved in ACEA-induced protective effects on neurons and mitochondrial functions, suggesting mtCB1R may be a potential novel target for the treatment of brain ischemic injury.”

http://www.ncbi.nlm.nih.gov/pubmed/26215450

Preclinical evaluation of SMM-189, a cannabinoid receptor 2-specific inverse agonist.

“Cannabinoid receptor 2 agonists and inverse agonists are emerging as new therapeutic options for a spectrum of autoimmune-related disease.

Of particular interest, is the ability of CB2 ligands to regulate microglia function in neurodegenerative diseases and traumatic brain injury.

We have previously reported the receptor affinity of 3′,5′-dichloro-2,6-dihydroxy-biphenyl-4-yl)-phenyl-methanone (SMM-189) and the characterization of the beneficial effects of SMM-189 in the mouse model of mild traumatic brain injury.

Herein, we report the further characterization of SMM-189 as a potent and selective CB2 inverse agonist, which acts as a noncompetitive inhibitor of CP 55,940.

The ability of SMM-189 to regulate microglial activation, in terms of chemokine expression and cell morphology, has been determined.

Finally, we have determined that SMM-189 possesses acceptable biopharmaceutical properties indicating that the triaryl class of CB2 inverse agonists are viable compounds for continued preclinical development for the treatment of neurodegenerative disorders and traumatic brain injury.”

http://www.ncbi.nlm.nih.gov/pubmed/26196013

Ultralow doses of cannabinoid drugs protect the mouse brain from inflammation-induced cognitive damage.

“In our previous studies, we found that a single ultralow dose of tetrahydrocannabinol (THC)… protects the brain from different insults that cause cognitive deficits.

Because various insults may trigger a neuroinflammatory response that leads to secondary damage to the brain, the current study tested whether this extremely low dose of THC could protect the brain from inflammation-induced cognitive deficits…

Our results suggest that an ultralow dose of THC that lacks any psychotrophic activity protects the brain from neuroinflammation-induced cognitive damage and might be used as an effective drug for the treatment of neuroinflammatory conditions, including neurodegenerative diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/25042014

Combined neuroprotective action of adenosine A1 and cannabinoid CB1 receptors against NMDA-induced excitotoxicity in the hippocampus.

“Both adenosine A1 and cannabinoid CB1 receptors trigger similar transduction pathways and protect against neurotoxic insults at the hippocampus, but their combined neuroprotective potential has not been investigated.

We set forth to assess the combined action of A1 and CB1 receptors against glutamate NMDA receptor-mediated excitotoxicity at the hippocampus…

The results suggest that both CB1 and A1 receptors produce additive cumulative neuroprotection against NMDA-induced excitotoxicity in the hippocampus.”

http://www.ncbi.nlm.nih.gov/pubmed/26065937

New horizons for newborn brain protection: enhancing endogenous neuroprotection.

“Intrapartum-related events are the third leading cause of childhood mortality worldwide and result in one million neurodisabled survivors each year. Infants exposed to a perinatal insult typically present with neonatal encephalopathy (NE).

The contribution of pure hypoxia-ischaemia (HI) to NE has been debated; over the last decade, the sensitising effect of inflammation in the aetiology of NE and neurodisability is recognised.

Therapeutic hypothermia is standard care for NE in high-income countries; however, its benefit in encephalopathic babies with sepsis or in those born following chorioamnionitis is unclear.

It is now recognised that the phases of brain injury extend into a tertiary phase, which lasts for weeks to years after the initial insult and opens up new possibilities for therapy.

There has been a recent focus on understanding endogenous neuroprotection and how to boost it or to supplement its effectors therapeutically once damage to the brain has occurred as in NE.

In this review, we focus on strategies that can augment the body’s own endogenous neuroprotection.

We discuss in particular remote ischaemic postconditioning whereby endogenous brain tolerance can be activated through hypoxia/reperfusion stimuli started immediately after the index hypoxic-ischaemic insult.

Therapeutic hypothermia, melatonin, erythropoietin and cannabinoids are examples of ways we can supplement the endogenous response to HI to obtain its full neuroprotective potential.

Achieving the correct balance of interventions at the correct time in relation to the nature and stage of injury will be a significant challenge in the next decade.”

http://www.ncbi.nlm.nih.gov/pubmed/26063194

Cannabinoid receptor 2 attenuates microglial accumulation and brain injury following germinal matrix hemorrhage via ERK dephosphorylation in vivo and in vitro.

“Microglia accumulation plays detrimental roles in the pathology of germinal matrix hemorrhage (GMH) in the immature preterm brain.

Here, we investigated the effects of a cannabinoid receptor 2 (CB2R) agonist on microglia proliferation and the possible involvement of the mitogen-activated protein kinase (MAPK) family pathway in a collagenase-induced GMH rat model and in thrombin-induced rat microglia cells.

Overall, these findings suggest that activation of the endocannabinoid system might attenuate inflammation-induced secondary brain injury after GMH in rats by reducing microglia accumulation through a mechanism involving ERK dephosphorylation.

Enhancing CB2R activation is a potential treatment to slow down the course of GMH in preterm newborns.”

http://www.ncbi.nlm.nih.gov/pubmed/25963415

http://www.thctotalhealthcare.com/category/brain-trauma/

 

A Basal Tone of 2-Arachidonoylglycerol Contributes to Early Oligodendrocyte Progenitor Proliferation by Activating Phosphatidylinositol 3-Kinase (PI3K)/AKT and the Mammalian Target of Rapamycin (MTOR) Pathways.

“A basal tone of the endocannabinoid 2-arachidonoylglycerol (2-AG) enhances late oligodendrocyte progenitor cell (OPC) differentiation. Here, we investigated whether endogenous 2-AG may also promote OPC proliferation in earlier stages…

Our data suggest that proliferation of early OPCs stimulated by PDGF-AA and bFGF depends on the tonic activation of cannabinoid receptors by endogenous 2-AG and provide further evidence on the role of endocannabinoids in oligodendrocyte development, being important for the maintenance and self-renewal of the OPCs.

The results highlight the therapeutic potential of the endocannabinoid signaling in the emerging field of brain repair.”

http://www.ncbi.nlm.nih.gov/pubmed/25900077

The interactive role of cannabinoid and vanilloid systems in hippocampal synaptic plasticity in rats.

“Long-term potentiation (LTP) has been most thoroughly studied in the hippocampus, which has a key role in learning and memory. Endocannabinoids are one of the endogenous systems that modulate this kind of synaptic plasticity. The activation of the vanillioid system has also been shown to mediate synaptic plasticity in the hippocampus. In addition, immunohistochemical studies have shown that cannabinoid receptor type 1 (CB1) and vanilloid receptor 1 (TRPV1) are closely located in the hippocampus.

It seems that agonists of the vanilloid system modulate cannabinoid outputs that cause an increase in synaptic plastisity, while in contemporary consumption of two agonist, TRPV1 agonist can change production of endocannabinoid, which in turn result to enhancement of LTP induction. These findings suggest that the two systems may interact or share certain common signaling pathways in the hippocampus.”

http://www.ncbi.nlm.nih.gov/pubmed/25843413

Palmitoyl Serine: An Endogenous Neuroprotective Endocannabinoid-Like Entity After Traumatic Brain Injury.

“The endocannabinoid (eCB) system helps recovery following traumatic brain injury (TBI).

Treatment with 2-arachidonoylglycerol (2-AG), a cerebral eCB ligand, was found to ameliorate the secondary damage.

Interestingly, the fatty acid amino acid amide (FAAA) N-arachidonoyl-L-serine (AraS) exerts similar eCB dependent neuroprotective. The present study aimed to investigate the effects of the FAAA palmitoyl-serine (PalmS) following TBI.

We suggest that the neuroprotective action of PalmS is mediated by indirect activation of the eCB receptors following TBI. One such mechanism may involve receptor palmitoylation which has been reported to result in structural stabilization of the receptors and to an increase in their activity. Further research is required in order to establish this assumption.”

http://www.ncbi.nlm.nih.gov/pubmed/25721934

http://www.thctotalhealthcare.com/category/brain-trauma/

Cannabinoid agonist rescues learning and memory after a traumatic brain injury.

“Traumatic brain injury (TBI) can cause persistent challenges including problems with learning and memory.

Previous studies suggest that the activation of the cannabinoid 1 receptor after a traumatic brain injury could be beneficial.

We tested the hypothesis that posttraumatic brain injury administration of a cannabinoid 1 receptor agonist can rescue deficits in learning and memory.

Young adult male rats were subjected to a moderately severe controlled cortical impact brain injury, with a subset given postinjury i.p. injections of a cannabinoid receptor agonist.

Utilizing novel object recognition and the morris water task, we found that the brain-injured animals treated with the agonist showed a marked recovery.”

http://www.ncbi.nlm.nih.gov/pubmed/25815355

“Taken together, this study shows that the administration of a CB1R agonist after a TBI rescues deficits in learning and memory.”  http://onlinelibrary.wiley.com/doi/10.1002/acn3.163/full

http://www.thctotalhealthcare.com/category/brain-trauma/