Immunolocalization of cannabinoid receptor type 1 and CB2 cannabinoid receptors, and transient receptor potential vanilloid channels in pterygium.

Journal Cover

“Cannabinoids, as multi‑target mediators, activate cannabinoid receptors and transient receptor potential vanilloid (TRPV) channels. There is evidence to support a functional interaction of cannabinoid receptors and TRPV channels when they are coexpressed.

Human conjunctiva demonstrates widespread cannabinoid receptor type 1 (CB1), CB2 and TRPV channel localization. The aim of the present study was to investigate the expression profile for cannabinoid receptors (CB1 and CB2) and TRPV channels in pterygium, an ocular surface lesion originating from the conjunctiva.

The differentiated expression of cannabinoid receptors in combination with the presence of TRPV channels, in primary and recurrent pterygia, imply a potential role of these cannabinoidtargets in the underlying mechanisms of pterygium.”

“A pterygium is a pinkish, triangular tissue growth on the cornea of the eye.”  https://en.wikipedia.org/wiki/Pterygium_(conjunctiva)

Receptor-heteromer mediated regulation of endocannabinoid signaling in activated microglia. Role of CB1 and CB2 receptors and relevance for Alzheimer’s disease and levodopa-induced dyskinesia.

Cover image

“Endocannabinoids are important regulators of neurotransmission and, acting on activated microglia, they are postulated as neuroprotective agents. Endocannabinoid action is mediated by CB1 and CB2 receptors, which may form heteromeric complexes (CB1-CB2Hets) with unknown function in microglia.

We aimed at establishing the expression and signaling properties of cannabinoidreceptors in resting and LPS/IFN-γ-activated microglia. Unlike CB1, CB2 receptors and CB1-CB2Hets were upregulated in activated microglia. Resting cell refractory CB2 receptors became robustly coupled to Gi in activated cells, in which CB1-CB2Hets mediated a positive cross-talk. Resting cells were refractory while activated cells were highly responsive to cannabinoids. Interestingly, similar results were obtained in cultures treated with ß-amyloid (Aß1-42). Activation microglial markers were detected in the striatum of a Parkinson’s disease (PD) model and, remarkably, in primary microglia cultures from the hippocampus of mutant β-amyloid precursor protein (APPSw,Ind) mice, a transgenic Alzheimer’s disease (AD) model. Also of note was the similar cannabinoid receptor signaling found in primary cultures of microglia from APPSw,Ind and in cells from control animals activated using LPS plus IFN- γ. Expression of CB1-CB2Hets was increased in the striatum from rats rendered dyskinetic by chronic levodopa treatment.

In summary, our results showed sensitivity of activated microglial cells to cannabinoids, increased CB1-CB2Het expression in activated microglia and in microglia from the hippocampus of an AD model, and a correlation between levodopa-induced dyskinesia and striatal microglial activation in a PD model. Cannabinoid receptors and the CB1-CB2 heteroreceptor complex in activated microglia have potential as targets in the treatment of neurodegenerative diseases.”

https://www.ncbi.nlm.nih.gov/pubmed/28843453

http://www.sciencedirect.com/science/article/pii/S0889159117304038

Characterization of Structurally Novel G Protein Biased CB1 Agonists: Implications for Drug Development.

Cover image

“The human cannabinoid subtype 1 receptor (hCB1R) is highly expressed in the CNS and serves as a therapeutic target for endogenous ligands as well as plant-derived and synthetic cannabinoids. Unfortunately, acute use of hCB1R agonists produces unwanted psychotropic effects and chronic administration results in development of tolerance and dependence, limiting the potential clinical use of these ligands. Studies in β-arrestin knockout mice suggest that interaction of certain GPCRs, including μ-, δ-, κ-opioid and hCB1Rs, with β-arrestins might be responsible for several adverse effects produced by agonists acting at these receptors. Indeed, agonists that bias opioid receptor activation toward G-protein, relative to β-arrestin signaling, produce less severe adverse effects. These observations indicate that therapeutic utility of agonists acting at hCB1Rs might be improved by development of G-protein biased hCB1R agonists. Our laboratory recently reported a novel class of indole quinulidinone (IQD) compounds that bind cannabinoid receptors with relatively high affinity and act with varying efficacy. The purpose of this study was to determine whether agonists in this novel cannabinoid class exhibit ligand bias at hCB1 receptors. Our studies found that a novel IQD-derived hCB1receptor agonist PNR-4-20 elicits robust G protein-dependent signaling, with transduction ratios similar to the non-biased hCB1R agonist CP-55,940. In marked contrast to CP-55,940, PNR-4-20 produces little to no β-arrestin 2 recruitment. Quantitative calculation of bias factors indicates that PNR-4-20 exhibits from 5.4-fold to 29.5-fold bias for G protein, relative to β-arrestin 2 signaling (when compared to G protein activation or inhibition of forskolin-stimulated cAMP accumulation, respectively). Importantly, as expected due to reduced β-arrestin 2 recruitment, chronic exposure of cells to PNR-4-20 results in significantly less desensitization and down-regulation of hCB1Rs compared to similar treatment with CP-55,940. PNR-4-20 (i.p.) is active in the cannabinoid tetrad in mice and chronic treatment results in development of less persistent tolerance and no significant withdrawal signs when compared to animals repeatedly exposed to the non-biased full agoinst JWH-018 or Δ9-THC. Finally, studies of a structurally similar analog PNR- 4-02 show that it is also a G protein biased hCB1R agonist. It is predicted that cannabinoid agonists that bias hCB1R activation toward G protein, relative to β-arrestin 2 signaling, will produce fewer and less severe adverse effects both acutely and chronically.”

https://www.ncbi.nlm.nih.gov/pubmed/28838808

http://www.sciencedirect.com/science/article/pii/S1043661816314244

Cannabinoids as Anticancer Drugs.

Advances in Pharmacology

“The endocannabinoid system encompassing cannabinoid receptors, endogenous receptor ligands (endocannabinoids), as well as enzymes conferring the synthesis and degradation of endocannabinoids has emerged as a considerable target for pharmacotherapeutical approaches of numerous diseases. Besides palliative effects of cannabinoids used in cancer treatment, phytocannabinoids, synthetic agonists, as well as substances that increase endogenous endocannabinoid levels have gained interest as potential agents for systemic cancer treatment. Accordingly, cannabinoid compounds have been reported to inhibit tumor growth and spreading in numerous rodent models. The underlying mechanisms include induction of apoptosis, autophagy, and cell cycle arrest in tumor cells as well as inhibition of tumor cell invasion and angiogenic features of endothelial cells. In addition, cannabinoids have been shown to suppress epithelial-to-mesenchymal transition, to enhance tumor immune surveillance, and to support chemotherapeutics’ effects on drug-resistant cancer cells. However, unwanted side effects include psychoactivity and possibly pathogenic effects on liver health. Other cannabinoids such as the nonpsychoactive cannabidiol exert a comparatively good safety profile while exhibiting considerable anticancer properties. So far experience with anticarcinogenic effects of cannabinoids is confined to in vitro studies and animal models. Although a bench-to-bedside conversion remains to be established, the current knowledge suggests cannabinoid compounds to serve as a group of drugs that may offer significant advantages for patients suffering from cancer diseases. The present review summarizes the role of the endocannabinoid system and cannabinoid compounds in tumor progression.”

https://www.ncbi.nlm.nih.gov/pubmed/28826542

http://www.sciencedirect.com/science/article/pii/S105435891730039X?via%3Dihub

Cannabinoids and Pain: Sites and Mechanisms of Action.

Advances in Pharmacology

“The endocannabinoid system, consisting of the cannabinoid1 receptor (CB1R) and cannabinoid2 receptor (CB2R), endogenous cannabinoid ligands (endocannabinoids), and metabolizing enzymes, is present throughout the pain pathways. Endocannabinoids, phytocannabinoids, and synthetic cannabinoid receptor agonists have antinociceptive effects in animal models of acute, inflammatory, and neuropathic pain. CB1R and CB2R located at peripheral, spinal, or supraspinal sites are important targets mediating these antinociceptive effects. The mechanisms underlying the analgesic effects of cannabinoids likely include inhibition of presynaptic neurotransmitter and neuropeptide release, modulation of postsynaptic neuronal excitability, activation of the descending inhibitory pain pathway, and reductions in neuroinflammatory signaling. Strategies to dissociate the psychoactive effects of cannabinoids from their analgesic effects have focused on peripherally restricted CB1R agonists, CB2R agonists, inhibitors of endocannabinoid catabolism or uptake, and modulation of other non-CB1R/non-CB2R targets of cannabinoids including TRPV1, GPR55, and PPARs. The large body of preclinical evidence in support of cannabinoids as potential analgesic agents is supported by clinical studies demonstrating their efficacy across a variety of pain disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/28826543

http://www.sciencedirect.com/science/article/pii/S1054358917300443?via%3Dihub

Cannabinoids in the Cardiovascular System.

Advances in Pharmacology

“Cannabinoids are known to modulate cardiovascular functions including heart rate, vascular tone, and blood pressure in humans and animal models. Essential components of the endocannabinoid system, namely, the production, degradation, and signaling pathways of endocannabinoids have been described not only in the central and peripheral nervous system but also in myocardium, vasculature, platelets, and immune cells.

The mechanisms of cardiovascular responses to endocannabinoids are often complex and may involve cannabinoid CB1 and CB2 receptors or non-CB1/2 receptor targets.

Preclinical and some clinical studies have suggested that targeting the endocannabinoid system can improve cardiovascular functions in a number of pathophysiological conditions, including hypertension, metabolic syndrome, sepsis, and atherosclerosis.

In this chapter, we summarize the local and systemic cardiovascular effects of cannabinoids and highlight our current knowledge regarding the therapeutic potential of endocannabinoid signaling and modulation.”

https://www.ncbi.nlm.nih.gov/pubmed/28826540

http://www.sciencedirect.com/science/article/pii/S1054358917300431?via%3Dihub

Is the Cannabinoid CB2 Receptor a Major Regulator of the Neuroinflammatory Axis of the Neurovascular Unit in Humans?

Elsevier

“The central nervous system (CNS) is an immune privileged site where the neurovascular unit (NVU) and the blood-brain barrier (BBB) act as a selectively permeable interface to control the passage of nutrients and inflammatory cells into the brain parenchyma. However, in response to injury, infection, or disease, CNS cells become activated, and release inflammatory mediators to recruit immune cells to the site of inflammation.

Increasing evidence suggests that cannabinoids may have a neuroprotective role in CNS inflammatory conditions.

For many years, it was widely accepted that cannabinoid receptor type 1 (CB1) modulates neurological function centrally, while peripheral cannabinoid receptor type 2 (CB2) modulates immune function.

As knowledge about the physiology and pharmacology of the endocannabinoid system advances, there is increasing interest in targeting CB2 as a potential treatment for inflammation-dependent CNS diseases (Ashton & Glass, 2007), where recent rodent and human studies have implicated intervention at the level of the NVU and BBB.

These are incredibly important in brain health and disease. Therefore, this review begins by explaining the cellular and molecular components of these systems, highlighting important molecules potentially regulated by cannabinoid ligands and then takes an unbiased look at the evidence in support (or otherwise) of cannabinoid receptor expression and control of the NVU and BBB function in humans.”

https://www.ncbi.nlm.nih.gov/pubmed/28826541

http://www.sciencedirect.com/science/article/pii/S1054358917300376?via%3Dihub

The Role of Nuclear Hormone Receptors in Cannabinoid Function.

Elsevier

“Since the early 2000s, evidence has been accumulating that most cannabinoid compounds interact with the nuclear hormone family peroxisome proliferator-activated receptors (PPARs). This can be through direct binding of these compounds to PPARs, metabolism of cannabinoid to other PPAR-activating chemicals, or indirect activation of PPAR through cell signaling pathways. Delivery of cannabinoids to the nucleus may be facilitated by fatty acid-binding proteins and carrier proteins. All PPAR isoforms appear to be activated by cannabinoids, but the majority of evidence is for PPARα and γ. To date, little is known about the potential interaction of cannabinoids with other nuclear hormones. At least some (but not all) of the well-known biological actions of cannabinoids including neuroprotection, antiinflammatory action, and analgesic effects are partly mediated by PPAR-activation, often in combination with activation of the more traditional target sites of action. This has been best investigated for the endocannabinoid-like compounds palmitoylethanolamide and oleoylethanolamine acting at PPARα, and for phytocannabinoids or their derivatives activation acting at PPARγ. However, there are still many aspects of cannabinoid activation of PPAR and the role it plays in the biological and therapeutic effects of cannabinoids that remain to be investigated.”

https://www.ncbi.nlm.nih.gov/pubmed/28826538

http://www.sciencedirect.com/science/article/pii/S1054358917300364?via%3Dihub

Cannabinoid Receptor-Related Orphan G Protein-Coupled Receptors.

Elsevier

“Of the druggable group of G protein-coupled receptors in the human genome, a number remain which have yet to be paired with an endogenous ligand-orphan GPCRs. Among these 100 or so entities, 3 have been linked to the cannabinoid system. GPR18, GPR55, and GPR119 exhibit limited sequence homology with the established CB1 and CB2 cannabinoid receptors. However, the pharmacology of these orphan receptors displays overlap with CB1 and CB2 receptors, particularly for GPR18 and GPR55. The linking of GPR119 to the cannabinoid receptors is less convincing and emanates from structural similarities of endogenous ligands active at these GPCRs, but which do not cross-react. This review describes the evidence for describing these orphan GPCRs as cannabinoid receptor-like receptors.”

https://www.ncbi.nlm.nih.gov/pubmed/28826536

http://www.sciencedirect.com/science/article/pii/S1054358917300418?via%3Dihub

Actions and Regulation of Ionotropic Cannabinoid Receptors.

“Almost three decades have passed since the identification of the two specific metabotropic receptors mediating cannabinoid pharmacology. Thereafter, many cannabinoid effects, both at central and peripheral levels, have been well documented and characterized. However, numerous evidences demonstrated that these pharmacological actions could not be attributable solely to the activation of CB1 and CB2 receptors since several important cannabimimetic actions have been found in biological systems lacking CB1 or CB2 gene such as in specific cell lines or transgenic mice. It is now well accepted that, beyond their receptor-mediated effects, these molecules can act also via CB1/CB2-receptor-independent mechanism. Cannabinoids have been demonstrated to modulate several voltage-gated channels (including Ca2+, Na+, and various type of K+ channels), ligand-gated ion channels (i.e., GABA, glycine), and ion-transporting membranes proteins such as transient potential receptor class (TRP) channels. The first direct, cannabinoid receptor-independent interaction was reported on the function of serotonin 5-HT3 receptor-ion channel complex. Similar effects were reported also on the other above mentioned ion channels. In the early ninety, studies searching for endogenous modulators of L-type Ca2+ channels identified anandamide as ligand for L-type Ca2+ channel. Later investigations indicated that other types of Ca2+ currents are also affected by endocannabinoids, and, in the late ninety, it was discovered that endocannabinoids activate the vanilloid receptor subtype 1 (TRPV1), and nowadays, it is known that (endo)cannabinoids gate at least five distinct TRP channels. This chapter focuses on cannabinoid regulation of ion channels and lays special emphasis on their action at transient receptor channels.”

https://www.ncbi.nlm.nih.gov/pubmed/28826537