Cannabinoids selectively inhibit proliferation and induce death of cultured human glioblastoma multiforme cells

Journal of Neuro-Oncology

“Normal tissue toxicity limits the efficacy of current treatment modalities for glioblastoma multiforme (GBM).

We evaluated the influence of cannabinoids on cell proliferation, death, and morphology of human GBM cell lines and in primary human glial cultures, the normal cells from which GBM tumors arise. The influence of a plant derived cannabinoid agonist, Delta(9)-tetrahydrocannabinol Delta(9)-THC), and a potent synthetic cannabinoid agonist, WIN 55,212-2, were compared using time lapse microscopy.

We discovered that Delta(9)-THC decreases cell proliferation and increases cell death of human GBM cells more rapidly than WIN 55,212-2. Delta(9)-THC was also more potent at inhibiting the proliferation of GBM cells compared to WIN 55,212-2. The effects of Delta(9)-THC and WIN 55,212-2 on the GBM cells were partially the result of cannabinoid receptor activation.

The same concentration of Delta(9)-THC that significantly inhibits proliferation and increases death of human GBM cells has no significant impact on human primary glial cultures. Evidence of selective efficacy with WIN 55,212-2 was also observed but the selectivity was less profound, and the synthetic agonist produced a greater disruption of normal cell morphology compared to Delta(9)-THC.”

https://www.ncbi.nlm.nih.gov/pubmed/16078104

https://link.springer.com/article/10.1007%2Fs11060-004-5950-2

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Delta 9-tetrahydrocannabinol inhibits cell cycle progression by downregulation of E2F1 in human glioblastoma multiforme cells.

“The active components of Cannabis sativa L., Cannabinoids, traditionally used in the field of cancer for alleviation of pain, nausea, wasting and improvement of well-being have received renewed interest in recent years due to their diverse pharmacologic activities such as cell growth inhibition, anti-inflammatory activity and induction of tumor regression. Here we used several experimental approaches, which identified delta-9-tetrahydrocannabinol (Delta(9)-THC) as an essential mediator of cannabinoid antitumoral action.”

“CONCLUSIONS:

Delta(9)-THC is shown to significantly affect viability of GBM cells via a mechanism that appears to elicit G(1) arrest due to downregulation of E2F1 and Cyclin A. Hence, it is suggested that Delta(9)-THC and other cannabinoids be implemented in future clinical evaluation as a therapeutic modality for brain tumors.”

http://www.ncbi.nlm.nih.gov/pubmed/17934890

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

A pilot clinical study of Δ9-tetrahydrocannabinol in patients with recurrent glioblastoma multiforme

“One of the most devastating forms of cancer is glioblastoma multiforme (grade IV astrocytoma), the most frequent class of malignant primary brain tumours. Current standard therapeutic strategies for the treatment of glioblastoma multiforme (surgical resection and focal radiotherapy) are only palliative…”

“The hemp plant Cannabis sativa L. produces approximately 60 unique compounds known as cannabinoids, of which Δ9-tetrahydrocannabinol (THC) is the most important owing to its high potency and abundance in cannabis. Δ9-Tetrahydrocannabinol exerts a wide variety of biological effects by mimicking endogenous substances – the so-called endocannabinoids – that bind to and activate specific cell surface receptors. cannabinoids have been proposed as potential antitumoral agents owing to their ability to inhibit the growth and angiogenesis of various types of tumour xenografts in animal models.”

“Here we report the first clinical study aimed at assessing cannabinoid antitumoral action, specifically a pilot phase I trial in which nine patients with recurrent glioblastoma multiforme were administered THC intratumoraly. The patients had previously failed standard therapy (surgery and radiotherapy) and had clear evidence of tumour progression. The primary end point of the study was to determine the safety of intracranial THC administration… Cannabinoid delivery was safe and could be achieved without overt psychoactive effects…. The fair safety profile of THC, together with its possible antiproliferative action on tumour cells reported here and in other studies, may set the basis for future trials aimed at evaluating the potential antitumoral activity of cannabinoids.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2360617/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoids Curb Brain Tumor Growth, First-Ever Patient Trial Shows

“Madrid, Spain: THC administration decreases recurrent glioblastoma multiforme (GBM) tumor growth in humans, according to the findings of the first-ever clinical trial assessing cannabinoids’ anti-tumor action.

Investigators at Complutense University in Spain administered THC intratumorally in nine patients diagnosed with recurrent GBM, an extremely rapid and lethal form of brain tumor. Patients in the study had previously failed standard therapy (surgery and radiotherapy) and had clear evidence of tumor progression. THC treatment was associated with reduced tumor cell proliferation in two subjects, authors reported.

Investigators did not determine whether THC positively impacted patients’ survival, though they did conclude that cannabinoid therapy does not facilitate cancer growth or decrease patients’ life expectancy. Median survival of the cohort from the beginning of cannabinoid administration was 24 weeks, and two patients survived for approximately one year. Survival for GBM patients following diagnosis is typically six to twelve months.

Researchers speculated that newly diagnosed glioma patients may respond more favorably to cannabinoid-based therapies.

Investigators also reported that THC demonstrated significant anti-proliferative activity on human GBM cells in culture.

“The fair safety profile of THC, together with its possible anti-proliferative action on tumor cells reported here and in other studies, may set the basis for future trials aimed at evaluating the potential antitumoral activity of cannabinoids,” investigators concluded.

In 2005, investigators at the California Pacific Medical Center Research Institute in San Francisco reported that THC selectively decreases the proliferation of malignant cells and induces cell death in human GBM cell lines. Healthy cells in the study were unaffected by THC administration.

Separate preclinical studies indicate that cannabinoids and endocannabinoids can stave off tumor progression and trigger cell death in other cancer cell lines, including breast carcinoma, prostate carcinoma, colectoral carcinoma, skin carcinoma, and pancreatic adenocarcinoma.”

http://norml.org/news/2006/07/13/cannabinoids-curb-brain-tumor-growth-first-ever-patient-trial-shows

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous