Cannabidiol potentiates pharmacological effects of Delta(9)-tetrahydrocannabinol via CB(1) receptor-dependent mechanism.

“Cannabidiol, a non-psychoactive component of cannabis, has been reported to have interactions with Delta(9)-tetrahydrocannabinol (Delta(9)-THC)…

In the present study, we investigated whether cannabidiol modulates the pharmacological effects of Delta(9)-THC…

Cannabidiol potentiated pharmacological effects of Delta(9)-THC via CB(1) receptor-dependent mechanism.

These findings may contribute in setting the basis for interaction of cannabinoids and to find a cannabinoid mechanism in central nervous system.”

http://www.ncbi.nlm.nih.gov/pubmed/18021759

Marijuana Compounds Possess Synergistic Anti-Cancer Effects, Study Says

“Marijuana’s active compounds act synergistically to inhibit the growth of cancer cells and induce malignant cell death, according to preclinical trial data published online by the journal Molecular Cancer Therapeutics.

Investigators at the University of California, Pacific Medical Center Research Institute assessed whether the administration of the non-psychoactive cannabidiol would enhance the anti-cancer effects of THC on glioblastoma (brain cancer) cells.

Researchers reported that a combination of cannabinoids showed greater anti-cancer activity than the administration of either compound individually. “We discovered that cannabidiol enhanced the ability of THC to inhibit cell proliferation and induce cell cycle arrest and apoptosis (programmed cell death),” authors reported.

Investigators concluded: “Individually, THC and cannabidiol can activate distinct pathways in glioblastoma cells that ultimately culminate in inhibition of cancer cell growth and invasion as well as induction of cell death. We hypothesized that, if the individual agents were combined, a convergence on shared pathways may ensue, leading to an enhanced ability of the combination treatment to inhibit certain cancer cell phenotypes. We found this to be true in this investigation.”

A 2008 scientific review published in the journal Cancer Research reported that the cannabinioids inhibit cell proliferation in a wide range of cancers, including brain cancer, prostate cancer, breast cancer, lung cancer, skin cancer, pancreatic cancer, and lymphoma.”

http://norml.org/news/2010/01/21/marijuana-compounds-possess-synergistic-anti-cancer-effects-study-says

Cannabidiol enhances the inhibitory effects of Δ9-tetrahydrocannabinol on human glioblastoma cell proliferation and survival

Molecular Cancer Therapeutics

Δ9-THC and other cannabinoids can act as direct anticancer agents in multiple types of cancer in culture and in vivo. 

Individually, Δ9-THC and CBD can activate distinct pathways in glioblastoma cells that ultimately culminate in inhibition of cancer cell growth and invasion as well as induction of cell death.

We hypothesized that, if the individual agents were combined, a convergence on shared pathways may ensue leading to an enhanced ability of the combination treatment to inhibit certain cancer cell phenotypes.

We found this to be true in this investigation.

CBD enhances the inhibitory effects of Δ9-THC on glioblastoma cell growth.

Cannabidiol significantly improved the inhibitory effects of Δ9-tetrahydrocannabinol on glioblastoma cell proliferation and survival.

The Combination Treatment of Δ9-THC and Cannabidiol Inhibits Cell Cycle and Induces Apoptosis.

Our results suggest that the addition of CBD to Δ9-THC may improve the overall effectiveness of Δ9-THC in the treatment of glioblastoma in cancer patients.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2806496/

http://mct.aacrjournals.org/content/9/1/180.full

“CBD Enhances the Anticancer Effects of THC”  https://www.scribd.com/document/50154001/CBD-Enhances-the-Anticancer-Effects-of-THC-Journal-MCT-Marcu

Cannabis-Linked Cell Receptor Might Help Prevent Colon Cancer

“A cannabinoid receptor lying on the surface of cells may help suppress colorectal cancer, say U.S. researchers. When the receptor is turned off, tumor growth is switched on. Cannabinoids are compounds related to the tetrahydrocannabinol (THC) found in the cannabis plant.”

Photo of colon composite

“It’s already known that the receptor, CB1, plays a role in relieving pain and nausea, elevating mood and stimulating appetite by serving as a docking station for the cannabinoid group of signaling molecules. This study suggests that CB1 may offer a new path for cancer prevention or treatment.”

More: http://www.medicinenet.com/script/main/art.asp?articlekey=91511

Cannabis-Linked Cell Receptor Might Help Prevent Colon Cancer – TheWashingtonPost

“A cannabinoid receptor lying on the surface of cells may help suppress colorectal cancer, say U.S. researchers. When the receptor is turned off, tumor growth is switched on.

Cannabinoids are compounds related to the tetrahydrocannabinol (THC) found in the cannabis plant.

It’s already known that the receptor, CB1, plays a role in relieving pain and nausea, elevating mood and stimulating appetite by serving as a docking station for the cannabinoid group of signaling molecules. This study suggests that CB1 may offer a new path for cancer prevention or treatment.”

More: http://articles.washingtonpost.com/2008-08-01/news/36873908_1_colorectal-cancer-tumor-growth-smaller-tumors

Cannabinoid cell surface receptor plays a tumor-suppressing role in human colorectal cancer

“New preclinical research shows that cannabinoid cell surface receptor CB1 plays a tumor-suppressing role in human colorectal cancer, scientists report in the Aug. 1 edition of the journal Cancer Research.

CB1 is well-established for relieving pain and nausea, elevating mood and stimulating appetite by serving as a docking station for the cannabinoid group of signaling molecules. It now may serve as a new path for cancer prevention or treatment.

“We’ve found that CB1 expression is lost in most colorectal cancers, and when that happens a cancer-promoting protein is free to inhibit cell death,” said senior author Raymond DuBois, M.D., Ph.D., provost and executive vice president of The University of Texas M. D. Anderson Cancer Center.

DuBois and collaborators from Vanderbilt-Ingram Cancer Center also show that CB1 expression can be restored with an existing drug, decitabine. They found that mice prone to developing intestinal tumors that also have functioning CB1 receptors develop fewer and smaller tumors when treated with a drug that mimics a cannabinoid receptor ligand. Ligands are molecules that function by binding to specific receptors. Agonists are synthetic molecules that mimic the action of a natural molecule.

“Potential application of cannabinoids as anti-tumor drugs is an exciting prospect, because cannabinoid agonists are being evaluated now to treat the side-effects of chemotherapy and radiation therapy,” DuBois said. “Turning CB1 back on and then treating with a cannabinoid agonist could provide a new approach to colorectal cancer treatment or prevention.”

Cannabinoids are a group of ligands that serve a variety of cell-signaling roles. Some are produced by the body internally (endocannabinoids). External cannabinoids include manmade versions and those present in plants, most famously the active ingredient in marijuana (THC).”

More: http://www.news-medical.net/news/2008/08/03/40485.aspx

Cannabinoids Decrease the Th17 Inflammatory Autoimmune Phenotype.

“Cannabinoids, the Cannabis constituents, are known to possess anti-inflammatory properties but the mechanisms involved are not understood. Here we show that the main psychoactive cannabinoid, Δ-9-tetrahydrocannabinol (THC), and the main nonpsychoactive cannabinoid, cannabidiol (CBD), markedly reduce the Th17 phenotype which is known to be increased in inflammatory autoimmune pathologies such as Multiple Sclerosis…

Pretreatment with CBD also resulted in increased levels of the anti-inflammatory cytokine IL-10. Interestingly, CBD and THC did not affect the levels of TNFα and IFNγ. The downregulation of IL-17 secretion by these cannabinoids does not seem to involve the CB1, CB2, PPARγ, 5-HT1A or TRPV1 receptors…

In conclusion, the results show a unique cannabinoid modulation of the autoimmune cytokine milieu combining suppression of the pathogenic IL-17 and IL-6 cytokines along with boosting the expression of the anti-inflammatory cytokine IL-10.”

http://www.ncbi.nlm.nih.gov/pubmed/23892791

The Hypocretin/Orexin Receptor-1 as a Novel Target to Modulate Cannabinoid Reward.

“Although there is a high prevalence of users who seek treatment for cannabis dependence, no accepted pharmacologic treatment is available to facilitate and maintain abstinence.

 The hypocretin/orexin system plays a critical role in drug addiction, but the potential participation of this system in the addictive properties of cannabinoids is unknown.

 We investigated…  studies were performed to evaluate dopamine extracellular levels in the nucleus accumbens after acute Δ9-tetrahydrocannabinol administration..

… role of Hcrtr-1 in the reinforcing and motivational properties of WIN55,212-2 (THC) was confirmed…

CONCLUSIONS:

These findings demonstrate that Hcrtr-1 modulates the reinforcing properties of cannabinoids, which could have a clear therapeutic interest.”

http://www.ncbi.nlm.nih.gov/pubmed/23896204

Palmitoylethanolamide: From endogenous cannabimimetic substance to innovative medicine for the treatment of cannabis dependence.

“Palmitoylethanolamide (PEA) is a fatty acid amide showing some pharmacodynamic similarities with Δ9-tetrahydrocannabinol, the principal psychoactive compound present in the cannabis plant.

Like Δ9-tetrahydrocannabinol, PEA can produce a direct or indirect activation of cannabinoid receptors.

 Furthermore, it acts as an agonist at TRPV1 receptor.

The hypothesis is that PEA has anti-craving effects in cannabis dependent patients, is efficacious in the treatment of withdrawal symptoms, produces a reduction of cannabis consumption and is effective in the prevention of cannabis induced neurotoxicity and neuro-psychiatric disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/23896215

Analysis of THCA synthase gene expression in cannabis: A preliminary study by real-time quantitative PCR.

“In this paper we describe analyses performed by Real-Time Reverse-Transcriptase Polymerase Chain Reaction (real-time RT-PCR) on RNA of 12 samples, carried out for forensic purposes to investigate a correlation between tetrahydrocannabinol (THC) concentration in Cannabis and the tetrahydrocannabinol acid synthase (THCAS) gene expression. Samples were obtained from an experimental cultivation of declared potency Cannabis variety seeds and from seizures. The Rubisco gene and the 26S ribosomal RNA gene were used as internal control genes for their constant expression and stability. As results we found minor gene expression in samples from leaves of young plants. Further, grouping results for cannabis samples with similar characteristics, we have found an increased relative expression in samples with the highest percentage of THC coming from seized sample and adult plants.”

http://www.ncbi.nlm.nih.gov/pubmed/23890639