Δ9‐TETRAHYDROCANNABINOLIC ACID ALLEVIATES COLLAGEN‐INDUCED ARTHRITIS: ROLE OF PPARγ AND CB1 RECEPTORS

British Journal of Pharmacology “Δ9‐THCA‐A, the precursor of Δ9‐THC, is a non‐psychotropic phytocannabinoid that shows PPARγ agonistic activity. Herein, we investigated Δ9‐THCA ability to modulate classic cannabinoid receptors (CB1 and CB2) and evaluated its anti‐arthritis activity.

Experimental Approach

Cannabinoid receptors binding and intrinsic activity, as well as their downstream signaling were analyzed in vitro and in silico . The anti‐arthritis properties of Δ9‐THCA‐A were studied in human chondrocytes and in the murine model of collagen‐induced arthritis (CIA). Plasmatic disease biomarkers were identified by liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) based on proteomic and ELISA assays.

Key Results

Functional and docking analyses showed that Δ9‐THCA‐A can act as an orthosteric CB1 agonist and also as a positive allosteric modulator in the presence of CP‐55,940. In addition, Δ9‐THCA‐A seemed to be an inverse agonist for CB2. In vivo experiments showed that Δ9‐THCA‐A reduced arthritis in CIA mice. Δ9‐THCA‐A prevented the infiltration of inflammatory cells; synovium hyperplasia and cartilage damage. Furthermore, Δ9‐THCA‐A inhibited the expression of inflammatory and catabolic genes on knee joints. The anti‐arthritic effect of Δ9‐THCA‐A was ablated by either SR141716 or T0070907. Analysis of plasmatic biomarkers as well as determination of cytokines and anti‐collagen antibodies confirmed that Δ9‐THCA‐A mediates its activity mainly through PPARγ and CB1 pathways.

Conclusion and Implications

Δ9‐THCA‐A modulates CB1 receptor through the orthosteric and allosteric binding sites. In addition, our studies document that Δ9‐THCA‐A exerts anti‐arthritis activity through CB1/PPARγ pathways, highlighting its potential for the treatment of chronic inflammatory diseases such as Rheumatoid Arthritis (RA).”

https://pubmed.ncbi.nlm.nih.gov/32510591/

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.15155

 British Pharmacological Society | Journals
Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Effect of combined doses of Δ9-tetrahydrocannabinol and cannabidiol or tetrahydrocannabinolic acid and cannabidiolic acid on acute nausea in male Sprague-Dawley rats.

 “This study evaluated the potential of combined cannabis constituents to reduce nausea.

CONCLUSION:

Combinations of very low doses of CBD + THC or CBDA + THCA robustly reduce LiCl-induced conditioned gaping. Clinical trials are necessary to determine the efficacy of using single or combined cannabinoids as adjunct treatments with existing anti-emetic regimens to manage chemotherapy-induced nausea.”

https://www.ncbi.nlm.nih.gov/pubmed/31897571

https://link.springer.com/article/10.1007%2Fs00213-019-05428-4

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Pharmacokinetics of Phytocannabinoid Acids and Anticonvulsant Effect of Cannabidiolic Acid in a Mouse Model of Dravet Syndrome.

 Go to Volume 0, Issue 0“Cannabis sativa produces a complex mixture of many bioactive molecules including terpenophenolic compounds known as phytocannabinoids. Phytocannabinoids come in neutral forms (e.g., Δ9-tetrahydrocannabinol, THC; cannabidiol, CBD; etc.) or as acid precursors, which are dominant in the plant (e.g., Δ9-tetrahydrocannabinolic acid, THCA; cannabidiolic acid, CBDA; etc.).

There is increasing interest in unlocking the therapeutic applications of the phytocannabinoid acids; however, the present understanding of the basic pharmacology of phytocannabinoid acids is limited. Herein the brain and plasma pharmacokinetic profiles of CBDA, THCA, cannabichromenic acid (CBCA), cannabidivarinic acid (CBDVA), cannabigerolic acid (CBGA), and cannabigerovarinic acid (CBGVA) were examined following intraperitoneal administration in mice.

Next it was examined whether CBDA was anticonvulsant in a mouse model of Dravet syndrome (Scn1aRX/+ mice). All the phytocannabinoid acids investigated were rapidly absorbed with plasma tmax values of between 15 and 45 min and had relatively short half-lives (<4 h). The brain-plasma ratios for the acids were very low at ≤0.04. However, when CBDA was administered in an alternate Tween 80-based vehicle, it exhibited a brain-plasma ratio of 1.9. The anticonvulsant potential of CBDA was examined using this vehicle, and it was found that CBDA significantly increased the temperature threshold at which the Scn1aRX/+ mice had a generalized tonic-clonic seizure.”

https://www.ncbi.nlm.nih.gov/pubmed/31686510

https://pubs.acs.org/doi/abs/10.1021/acs.jnatprod.9b00600

Abstract Image

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Elucidation of structure-function relationship of THCA and CBDA synthase from Cannabis sativa L.

Journal of Biotechnology

“Cannabinoids are secondary natural products from the plant Cannabis sativa L.

Therapeutic indications of cannabinoids currently comprise a significant area of medicinal research.

We have expressed the Δ9-tetrahydrocannabinolic acid synthase (THCAS) and cannabidiolic acid synthase (CBDAS) recombinantly in Komagataella phaffii and could detect eight different products with a cannabinoid scaffold after conversion of the precursor cannabigerolic acid (CBGA).

Besides five products remaining to be identified, both enzymes were forming three major cannabinoids of C. sativa – Δ9-tetrahydrocannabinolic acid (THCA), cannabidiolic acid (CBDA) and cannabichromenic acid (CBCA).

These studies lay the groundwork for further research as well as biotechnological cannabinoid production.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Anti-Inflammatory Activity in Colon Models Is Derived from Δ9-Tetrahydrocannabinolic Acid That Interacts with Additional Compounds in Cannabis Extracts.

“Inflammatory bowel diseases (IBDs) include Crohn’s disease, and ulcerative colitis. Cannabis sativa preparations have beneficial effects for IBD patients. However, C. sativa extracts contain hundreds of compounds. Although there is much knowledge of the activity of different cannabinoids and their receptor agonists or antagonists, the cytotoxic and anti-inflammatory activity of whole C. sativa extracts has never been characterized in detail with in vitro and ex vivo colon models.

Material and Methods: The anti-inflammatory activity of C. sativa extracts was studied on three lines of epithelial cells and on colon tissue. C. sativa flowers were extracted with ethanol, enzyme-linked immunosorbent assay was used to determine the level of interleukin-8 in colon cells and tissue biopsies, chemical analysis was performed using high-performance liquid chromatography, mass spectrometry and nuclear magnetic resonance and gene expression was determined by quantitative real-time PCR.

Results: The anti-inflammatory activity of Cannabis extracts derives from D9-tetrahydrocannabinolic acid (THCA) present in fraction 7 (F7) of the extract. However, all fractions of C. sativa at a certain combination of concentrations have a significant increased cytotoxic activity. GPR55 receptor antagonist significantly reduces the anti-inflammatory activity of F7, whereas cannabinoid type 2 receptor antagonist significantly increases HCT116 cell proliferation. Also, cannabidiol (CBD) shows dose dependent cytotoxic activity, whereas anti-inflammatory activity was found only for the low concentration of CBD, and in a bell-shaped rather than dose-dependent manner. Activity of the extract and active fraction was verified on colon tissues taken from IBD patients, and was shown to suppress cyclooxygenase-2 (COX2) and metalloproteinase-9 (MMP9) gene expression in both cell culture and colon tissue.

Conclusions: It is suggested that the anti-inflammatory activity of Cannabis extracts on colon epithelial cells derives from a fraction of the extract that contains THCA, and is mediated, at least partially, via GPR55 receptor. The cytotoxic activity of the C. sativa extract was increased by combining all fractions at a certain combination of concentrations and was partially affected by CB2 receptor antagonist that increased cell proliferation. It is suggested that in a nonpsychoactive treatment for IBD, THCA should be used rather than CBD.”

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The current status of artisanal cannabis for the treatment of epilepsy in the United States.

Image result for Epilepsy Behav

“The widespread patient use of artisanal cannabis preparations has preceded quality validation of cannabis use for epilepsy. Neurologists and cannabinoid specialists are increasingly in a position to monitor and guide the use of herbal cannabis in epilepsy patients. We report the retrospective data on efficacy and adverse effects of artisanal cannabis in Patients with medically refractory epilepsy with mixed etiologies in Washington State, California, and Maine. Clinical considerations, including potential risks and benefits, challenges related to artisanal preparations, and cannabinoid dosing, are discussed.

RESULTS:

Of 272 combined patients from Washington State and California, 37 (14%) found cannabis ineffective at reducing seizures, 29 (15%) experienced a 1-25% reduction in seizures, 60 (18%) experienced a 26-50% reduction in seizures, 45 (17%) experienced a 51-75% reduction in seizures, 75 (28%) experienced a 76-99% reduction in seizures, and 26 (10%) experienced a complete clinical response. Overall, adverse effects were mild and infrequent, and beneficial side effects such as increased alertness were reported. The majority of patients used cannabidiol (CBD)-enriched artisanal formulas, some with the addition of delta-9-tetrahydrocannabinol (THC) and tetrahydrocannabinolic acid (THCA). Four case reports are included that illustrate clinical responses at doses <0.1mg/kg/day, biphasic dose-response effects, the use of THCA for seizure prevention, the use of THC for seizure rescue, and the synergy of cannabinoids and terpenoids in artisanal preparations. This article is part of a Special Issue entitled “Cannabinoids and Epilepsy”.”

https://www.ncbi.nlm.nih.gov/pubmed/28254350

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Δ9-Tetrahydrocannabinolicacid synthase production in Pichia pastoris enables chemical synthesis of cannabinoids.

“Δ9-tetrahydrocannabinol (THC) is of increasing interest as a pharmaceutical and bioactive compound.

Chemical synthesis of THC uses a laborious procedure and does not satisfy the market demand.

The implementation of biocatalysts for specific synthesis steps might be beneficial for making natural product availability independent from the plant.

Δ9-Tetrahydrocannabinolicacid synthase (THCAS) from C. sativa L. catalyzes the cyclization of cannabigerolic acid (CBGA) to Δ9-tetrahydrocannabinolic acid (THCA), which is non-enzymatically decarboxylated to THC.

In conclusion, production of THCAS in Pichia pastoris MutS KM71 KE1, subsequent isolation, and its application in a two-liquid phase setup enables the synthesis of THCA on a mg scale.”

http://www.ncbi.nlm.nih.gov/pubmed/26197418

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Photosynthetic response of Cannabis sativa L., an important medicinal plant, to elevated levels of CO2

“Cannabis sativa L. (Cannabaceae) is a widely distributed plant around the world. It has a long history of medicinal use as far back as the 6th century B.C. Cannabis sativa is the natural source of the cannabinoids, a unique group of terpeno-phenolic compounds that accumulate in the glandular trichomes of the plant.

Δ9-Tetrahydrocannabinolic acid (Δ9-THCA) is the major cannabinoid which upon decarboxylation with age or heating gives rise to Δ9-THC, the primary psychoactive agent. The pharmacologic and therapeutic potency of Cannabis preparations and Δ9-THC have been extensively reviewed.

Despite of its medicinal importance and widespread occurrence, to the best of our knowledge, no information is available on the consequences of rising atmospheric CO2 concentration on its photosynthesis and growth performance.

This study describes the short term effect of elevated CO2 on photosynthetic characteristics and stomatal response in four different high Δ9-THC yielding varieties of Cannabis sativa.

The higher water use efficiency (WUE) under elevated CO2 conditions in Cannabis sativa, primarily because of decreased stomatal conductance and subsequently the transpiration rate, may enable this species to survive under expected harsh greenhouse effects including elevated CO2 concentration and drought conditions.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3550578/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

High prevalence of cannabis use among Aka foragers of the Congo Basin and its possible relationship to helminthiasis

Cover image for Vol. 27 Issue 3

“Little is known about cannabis use in hunter-gatherers. Therefore, we investigated cannabis use in the Aka, a population of foragers of the Congo Basin.

Because cannabis contains anthelminthic compounds,” http://medical-dictionary.thefreedictionary.com/anthelmintic ” and the Aka have a high prevalence of helminthiasis, we also tested the hypothesis that cannabis use might be an unconscious form of self-medication against helminths.

THCA levels were negatively correlated with parasite infection and reinfection, supporting the self-medication hypothesis.

This, to our knowledge, is the first biomarker-validated study of cannabis use in a hunting-gathering population, and also the first to explore the relationship between the use of cannabis, which is toxic to helminths, and intestinal helminth infection.

Although the conventional view is that drug abuse impairs immunity, thus increasing susceptibility to infection, if recreational drug use is explained by the drugs’ antiparasitic properties, this would suggest that the immune system plays a key role in regulating drug use.”  

http://onlinelibrary.wiley.com/doi/10.1002/ajhb.22740/full

“Medical Marijuana Smoking Linked to Parasite Prevention. Scientists from Washington State University have suggested that smoking cannabis may have a beneficial effect with regard to the avoidance of intestinal parasite infections, which could explain why the drug has such a long history of recreational use… those who smoked cannabis had a lower rate of infection.” http://www.newhistorian.com/medical-marijuana-smoking-linked-to-parasite-prevention/3936/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Sequence heterogeneity of cannabidiolic- and tetrahydrocannabinolic acid-synthase in Cannabis sativa L. and its relationship with chemical phenotype.

“Sequence variants of THCA- and CBDA-synthases were isolated from different Cannabis sativa L. strains expressing various wild-type and mutant chemical phenotypes (chemotypes). Expressed and complete sequences were obtained from mature inflorescences. Each strain was shown to have a different specificity and/or ability to convert the precursor CBGA into CBDA and/or THCA type products. The comparison of the expressed sequences led to the identification of different mutations, all of them due to SNPs. These SNPs were found to relate to the cannabinoid composition of the inflorescence at maturity and are therefore proposed to have a functional significance. The amount of variation was found to be higher within the CBDAS sequence family than in the THCAS family, suggesting a more recent evolution of THCA-forming enzymes from the CBDAS group. We therefore consider CBDAS as the ancestral type of these synthases.”

http://www.ncbi.nlm.nih.gov/pubmed/25865737

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous